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Superradiant Linear Raman Amplification in Plasma Using a Chirped Pump Pulse
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A theoretical and numerical investigation of small-signal Raman backscattering from a chirped pump
pulse in plasma shows that an ultrashort probe pulse will grow superradiantly, i.e., with an amplitude that
scales with the propagation length while contracting self-similarly. These features are commonly
associated with the nonlinear stages of Raman amplification in the pump depletion and Compton regimes.
We show that the superradiant scaling results in very broad-bandwidth amplification due to gain
distributed in frequency as well as spatially. Since different frequencies excite the plasma at different
positions, wave breaking is avoided, and prepulses and pedestals are substantially suppressed. Linear
chirped pulse amplification in plasma could provide a very broad-bandwidth alternative to solid state laser
amplifiers, potentially usable for optical pulses a few cycles in duration.
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High power short pulse lasers are valuable tools for
scientists and industrialists exploring a wide range of
phenomena and developing new technologies such as com-
pact wakefield accelerators [1–3] and compact light
sources [4]. The quest for reaching ever higher intensities
is motivated by the possibility of creating particles from
vacuum, which is predicted to occur above 1028 W=cm2,
for visible radiation. Modern high power lasers rely on
chirped pulse amplification (CPA), a technique originally
developed by Strickland and Mourou [5] in the 1980s to
avoid damage to optical components. CPA usually involves
using a monochromatic ‘‘pump’’ laser pulse to amplify a
stretched frequency-chirped ‘‘probe’’ pulse in a suitable
broadband amplifying medium, such as Ti:sapphire. After
amplification the probe pulse is compressed to short dura-
tion and high power, currently up to several petawatts.
Optical parametric chirped pulse amplification (OPCPA)
[6] has been proposed as a way of increasing both the
bandwidth and the power of laser amplifiers. However,
both CPA and OPCPA amplifiers are limited by damage
to optical components.

Amplification of laser pulses by stimulated Raman back-
scattering in plasma has been suggested as a way of
achieving higher intensities without breakdown of the
amplifying medium [7]. Raman backscattering in plasma
is a parametric process where two transverse electromag-
netic waves interact via longitudinal oscillations of the
electron density, ponderomotively driven by the beat of
the transverse waves. In homogeneous plasma, a low-
amplitude probe can grow at the expense of a pump with
frequency !0 if its frequency is down-shifted by the

plasma frequency !p �
���������������������
n0e

2=�0m
p

from !0. Here, n0 is
the electron density, m and e their mass and charge, re-
spectively, and �0 the permittivity of free space. Although

the growth rate �0 � a0

������������������
!0!p=2

q
(where a0 �

eE0=m!0c is the reduced vector potential of the pump,
E0 its electric field amplitude, and c the speed of light) can
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be high, the linear regime has generally been deemed
unsuitable for amplification of short pulses due to the small
frequency bandwidth ���0 leading to lengthening of the
probe pulse [8].

Also, the high gain may lead to unwanted amplification
of radiation scattered off density fluctuations. As a possible
way of avoiding this, the use of a longitudinal density
profile with linearly varying plasma frequency, together
with a frequency-chirped pump, has been investigated
[9,10].

In order to obtain short amplified pulses, it has been
suggested to make use of nonlinearities: First, for suffi-
ciently high probe amplitude the pump will be depleted
near the leading edge of the probe, so that growth is sup-
pressed at its rear; due to Burnham-Chiao ringing [11],
where energy is transferred both ways between pump and
probe, the latter develops into a train of short pulses [7].
Second, when the ponderomotive potential becomes suffi-
ciently strong for the oscillation frequency of the electrons
in its valleys, !B � 2!0

����������
a0a1
p

(where a1 is the reduced
probe amplitude), to exceed the plasma frequency, the
anharmonic character of the electron motion leads to an
increased bandwidth for effective interaction. In this self-
similar superradiant regime, the probe amplitude grows
linearly with the propagation distance while contracting
[12–14]. A similar increase of the amplification bandwidth
due to transverse localization was found for the case of
Raman scattering in deep plasma channels [15].

In this Letter, we investigate Raman amplification of a
low-amplitude probe using a chirped pump. We find two
important results: First, a large bandwidth pump allows
short amplified pulses to display the characteristics of
superradiant amplification: amplitude growth linear with
the propagation distance, and self-similar contraction. And
second, the amplitude of the longitudinal plasma wave
remains limited, which avoids losses due to wave breaking.
Although the analysis is performed for homogeneous
2-1 © 2005 The American Physical Society
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plasma, it is similar to the case of linearly varying plasma
frequency.

This superradiant scaling in the linear regime seems not
to have been noticed in earlier investigations. Since every
amplifier starting with a small seed has to start out in the
linear regime [9], and all the experiments to date have used
chirped pump pulses, it is, however, very relevant to their
interpretation. Contrary to, e.g., Ref. [16], it is not suffi-
cient to find superradiant growth to demonstrate having
reached the nonlinear regime. Furthermore, the evolution
in the linear regime determines the initial conditions for the
transition into the nonlinear one.

We study the propagation of a low-amplitude transverse
plane wave, the probe, along the positive z axis through
plasma occupying the half-space z � 0, in the presence of
a counterpropagating intense chirped pump wave. We
describe the evolution of the transverse electromagnetic
fields of pump and probe by the wave equation (denoting
partial time and z derivatives with @t and @z, respectively)

�@2
t � c2@2

z �!2
p� ~a � �!2

p ~a�n=n0 (1)

for the normalized (in units of mc=e) vector potential
~a�z; t�, and of the plasma wave by the oscillator equation

�@2
t �!2

p��n=n0 � @2
z�p=m (2)

for the deviations �n�z; t� of the electron density from its
unperturbed homogeneous value n0, driven by the pon-
deromotive potential �p � mc2 ~a2=2.

Corresponding to the separate fast and slow time scales
of transverse waves and plasma oscillations, respectively,
we write the vector potential as ~a�z; t� � �a0e

i’0�i’ch �
a1e

i’1� ~e�=2� c:c:, where ~e� is a unit vector for circular
polarization, a0�z; t� the envelope of the pump, a1�z; t� that
of the probe, i.e., seed and scattered wave; the respective
phases are ’0�z; t� � !0�t� z=c�, ’ch � ��t� z=c�2=2,
and ’1�z; t� � !1�t� z=c�. The pump frequency !0 �
��t� z=c� is chirped at a rate �. The corresponding pon-
deromotive potential is �p�z; t� � �a

	
0a1e

�i�’�i’ch �

c:c:�mc2=4, with �’�z; t� � ’0 � ’1 � �!0 �!1�t�
�!0 �!1�z=c. Similarly, we define the envelope n�z; t�
for the density modulations �n=n0 � ne�i�’=2� c:c:
The definition of probe and density envelopes with respect
to unchirped phases means that variations due to the chirp
of the pump will be taken into account in these envelopes.

Neglecting dispersion effects due to the linear plasma
response, and assuming a small chirp rate �, we find

�@t � c@z�a0 � i!2
pna1e

�i’ch=4!0; (3)

�@t � c@z�a1 � i!2
pn	a0ei’ch=4!0; (4)

�@2
t �!2

p�n � �2!2
0a0a	1e

i’ch : (5)

The second order equation for the density is retained to
allow for energy flow in either direction between the
16500
transverse waves (a possibility that does not occur for
monochromatic pump in inhomogeneous plasma). These
equations have been solved numerically below.

It is common to make progress in the analytic descrip-
tion by assuming that the frequencies are near the reso-
nance where energy flows from pump to probe. Further, for
small probe amplitude a1 the pump amplitude a0 remains
constant, and the envelope equations for probe and density
modulations simplify to

@�a1 � ��n; @	n � �	a1=�; (6)

where we have changed the variables to � � z=c, 	 � t�
z=c, and � � �!p=4!0�

3=2 is the probe amplitude at
which, in the resonant case, the plasma wave breaks,
jnj � 1 (for !p � 5
 1013 s�1, !0 � 2:4
 1015 s�1,
� � 3:8
 10�4). The coefficient � � �0ei’ch contains

both the growth rate �0��; 	� � a0��; 	�
������������������
!0!p=2

q
, and

the chirped phase ’ch � ��2� � 	�2=2 of the pump.
A field ~AS�t� applied at the plasma edge, z � 0, will

propagate into the plasma and, if the plasma dispersion can
be neglected, preserve its shape. Where it meets the pump,
it will generate density modulations and thus act as a seed
for scattering. We therefore split the probe envelope a1 �
��b��; 	� � s�	�� into seed s � eAS�	�=�mc and scattered
pulse b (scaled with the wave breaking limit �). Since
pump and probe interact efficiently only near resonance,
the chirp of the pump is imprinted on the density modu-
lations and the scattered probe. Thus, absorbing the
phase factor of � in modified envelopes ~n � ne2i�����	�,
~b � be�i�	

2=2, ~s � se�i�	
2=2 simplifies the coupling in

Eqs. (6) to

@� ~b � �0 ~n; �@	 � 2i���~n � �	0�~b� ~s�: (7)

Formally, we find Green’s functions ~b � g for the probe,
and ~n � h for the density by replacing the seed with a �
function, ~s�	� � ��	�. The response to arbitrary seeds may
be expressed in the form of convolutions, but for short
seeds it may be approximated by the Green’s functions
themselves. Eliminating the probe g yields �@�@	 �
2i��@� � 2i�� j�0j

2�h � 0, with boundary condition
h��; 	 � 0�� � �	0. Following the case of unchirped
pump, we look for a self-similar solution depending only
on the product x � 2��	, and obtain, with q � j�2

0j=2�,

�xd2
x � �1� ix�dx � i� q�h�x� � 0; h�0� � �	0;

(8)

the solution of which is a Laguerre function [17]:

h�x� � �	0Liq�1�ix�: (9)

This Green’s function has been found for the similar case
of inhomogeneous plasma [10,18]. Using Eqs. (7) we find
the probe Green’s function:

g��; 	� � j�0j
2�G�q; x�; (10)
2-2



PRL 95, 165002 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
14 OCTOBER 2005
with G�q; x� � i�Liq�ix� � Liq�1�ix��=x. The z depen-
dence of the Green’s functions (amplitude) is shown in
Fig. 1 for different times.

Although—taken on their own—they would violate the
assumption of a slowly varying amplitude, the Green’s
functions show features that should still hold for finite
duration seeds: As is apparent from Fig. 1, the density
modulation amplitude is limited; far from both plasma

edge and seed position, it tends to a finite value jhj !

hlim � j�0j
������������������������������������������
�e2�jqj � 1�=�2�jqj�

q
( �

����������
�=�

p
e�jqj for

jqj> 1). The probe g, Eq. (10), has a maximum amplitude
gmax � j�0j

2�Gmax�q� close to the seed position, with
Gmax�q� � maxxjG�q; x�j (Fig. 2). It grows linear with �
and thus the interaction time t, while its width decreases
/ 1=t. These features are very similar to the cases of pump
depletion for unchirped pump [7], and of superradiant
growth [12].

These results can be understood by considering the
distributed gain: consider a seed with Fourier components
s! within a bandwidth �s. Each frequency component s!
excites density modulations resonantly where its beat with
the chirped pump matches the plasma frequency. Since the
approximately exponential growth of the modulations,
with rate �j�0j, is restricted by the time ��j�0=2�j in
which the seed passes through the Raman bandwidth
��j�0j the modulation amplitude grows to hlimjs!j.
Assuming that the scattered Fourier components, of ap-
proximately constant magnitude, superpose coherently
without phase difference at some short distance behind
the seed and that the density modulation amplitude there
is close to the limiting value, the first of Eqs. (7) corre-
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FIG. 1. Snapshots of Green’s functions (amplitude) for probe
vector potential, g (top), and density modulations, h (bottom),
normalized with hlim; q � 1:86.
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sponds to linear growth of the scattered amplitude,
jbmaxj � j�0nj� � j�0s!jhlim� . However, deviations
from these assumptions reduce the growth to jbmaxj �
j�2

0s!jGmax� . Further behind the seed, the scattered ampli-
tude drops rapidly due to dephasing. The distance of linear
growth is limited by the seed bandwidth, �s, to � 
�s=2j�j, and thus the gain factor to jbmax=sj  jqjGmax,
where s � �sjs!j is an approximate measure of the seed
amplitude.

Breaking of the plasma wave �jnj � 1� can be avoided
by keeping js!j< 1=hlim. Since in the Raman interaction
energy flows from high to low frequencies, the maximum
useful seed bandwidth is !p, thus s  !p=hlim, and
jbmaxj  jqjGmax!p=hlim. For typical values a0 � 0:004,
!p � 0:02!0, thus j�0j � 0:02!p; j�j � 10�4!2

p, thus
q � 2, the gain factor can reach jqjGmax �
0:45hlim=j�0j � 68, and the probe amplitude can exceed
the wave breaking limit for the resonant case,�, by a factor
of jqjGmax!p=hlim � 22, corresponding to a1 � 0:008.
For !p � 0:06!0, leaving a0 and � unchanged, we find
q � 6, a gain factor of 1:5
 107, and a1  50� � 0:09.
Although this is beyond the linear regime treated in this
Letter, it serves to show that the present considerations are
relevant right up to the nonlinear regime.

In order to assess the limitations of the analytic results,
we have solved Eqs. (3)–(5) numerically, using a Crank-
Nicholson type algorithm. Figure 3 shows snapshots of the
evolution of the probe and density modulations for a seed
of finite duration. Whereas those of the scattered field look
very similar to the Green’s function, narrowing while
growing in amplitude, the corresponding density modula-
tions differ slightly. Apparently, detuning from the plasma
resonance does not completely suppress further excitation
of the plasma wave. Although efficiency is not of central
importance for this Letter, we estimate it to be �8% for
this case, by comparing the energy gained by the probe
with that encountered in the pump, for a seed amplitude
just avoiding wave breaking �jnj  1�.
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FIG. 2. Linear amplitude growth rate Gmax (solid line) as a
function of jqj � j�2

0=2�j, normalized with hlim=j�0j; also
jqjGmax (dashed line).
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FIG. 4. Wave number spectra bk of probe field, corresponding
to the snapshots in Fig. 3 (top), normalized with seed spectrum
s! (with ! � ck).
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FIG. 3. Snapshots of amplitudes of probe vector potential (top)
and density modulations (bottom), scaled with the maximum
seed amplitude, as; plasma frequency !p � 4:8
 1013 s�1,
central pump frequency !�0�0 � 2:36
 1015 s�1, resonant
growth rate �0 � 1:05
 1012 s�1, seed duration 10�13 s,
pump chirp � � 2:9
 1023 s�2, q � 1:9.
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The spectral distribution of the gain is evident in the
Fourier spectra (Fig. 4, corresponding to the snapshots of
Fig. 3), which show the amplification of successive wave
number components of the scattered field (with k corre-
sponding to frequency ! � ck).

To summarize, Raman amplification using a chirped
pump, as discussed in this Letter, shows interesting and
useful features: First, for each frequency component of the
seed, growth is limited by detuning from the resonance;
overall growth of the amplitude of a short pulse is thus
linear with propagation distance, not exponential, and the
probe shortens self-similarly. This is superradiant scaling.
Second, the amplification uses the broad bandwidth of the
pump, facilitating the amplification of short pulses. Third,
the gain is distributed, according to the positions where
different frequency components are in resonance. This
limits the plasma wave amplitude and avoids wave break-
ing. It also tends to suppress spontaneous scattering, ped-
estals, and prepulses.

We have shown that the features of superradiance: gain
saturation, bandwidth broadening, and the consequent
shortening of the amplified probe, which are normally
associated with the nonlinear stages of resonant Raman
and Compton scattering [16], are present in the linear
regime of chirped pump Raman amplification.
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