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Propagation of a Short Intense Laser Pulse
in a Curved Plasma Channel

Albert Reitsma and Dino Jaroszynski

Abstract—In this paper, the propagation of a short intense
laser pulse in a curved plasma channel is considered. The effects
of the shape of the plasma density profile and feedback from
the wakefield on the pulse envelope dynamics are studied, with
particular attention being paid to the conditions for avoiding laser
spot size and centroid oscillations. A possible application to laser
wakefield acceleration in the nonlinear regime is discussed.

Index Terms—Laser–plasma interaction, plasma-based acceler-
ation methods, plasma waveguides.

I. INTRODUCTION

LASER wakefield acceleration [1] is one of the several
schemes [2] that take advantage of the large-amplitude

electric fields of relativistic plasma waves to accelerate elec-
trons. In several recent breakthrough experiments [3]–[5],
high-quality electron beams with energies up to 1 GeV have
been obtained from the interaction of intense laser pulses with
gas jets and preformed plasma channels. The highest energies
have been obtained in experiments with preformed plasma
channels [6], which extend the laser–plasma interaction dis-
tance beyond the Rayleigh length by acting as a waveguide for
the laser light. This property makes plasma channels a suitable
medium for other various applications as well, for example,
X-ray lasing [7], harmonic generation [8], Raman amplification
[9], or the emission of betatron radiation [10].

The principle behind plasma channel guiding [11], [12] is
that a plasma column with an on-axis density depression acts
as a lens for focusing laser light. If there is a perfect balance
between the inward bending of light rays through the refractive
index gradient and the outward expansion through geometric
diffraction, the laser pulse can propagate without spot size or
centroid oscillations. This is known as matched propagation,
which usually requires that the pulse be injected on-axis with
the correct spot size, and propagating in the direction of the
channel. Sizeable spot size and/or centroid oscillations can
occur if the pulse is injected either off-axis, with a nonmatched
spot size, or under an angle with the channel axis. This is called
mismatched propagation: In severe cases, strong laser pulse de-
formation or loss of intensity due to radiation leaking out of the
channel may occur. Plasma channel guiding is not the only way
to achieve a long laser–plasma interaction length: Alternative
methods include capillary guiding [13] (which relies on total
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internal reflection on the boundary of a capillary), relativistic
self-focusing [14]–[16], and laser pulse shaping [17].

As with other types of waveguides, such as optical fibers, it is
possible with a plasma channel to guide the light along a curved
path by bending the waveguide. Light bending in a plasma
waveguide has been demonstrated experimentally more than ten
years ago for laser pulses with intensities below 1017 W · cm−2,
as reported in [18]. In the same publication, analytical and
numerical work on spot size and centroid oscillations was
presented. It was found that the radial equilibrium position of
the laser pulse centroid is displaced from the channel axis, and
an estimate for the minimum radius of curvature for radial con-
finement of the laser pulse in a curved channel was presented.
In a recent paper [19], which offers a more in-depth analysis
of the matching conditions, off-axis injection is proposed as a
way of avoiding centroid oscillations. In the same paper, the
effects of self-focusing and wakefields on the propagation of
the laser pulse, which become relevant only at laser intensities
above 1017 W · cm−2, are studied. Self-focusing is found to
be the mechanism that prevents the radial confinement of
ultrahigh-intensity laser pulses in a curved channel, whereas
the longitudinal pulse evolution in a linear wakefield is found
to be very similar to the corresponding evolution in a straight
channel [20].

In this paper, we consider laser–plasma interaction in curved
channels at still higher intensities (around 1018 W · cm−2),
having in mind a possible application to laser wakefield accel-
eration. We examine in detail the mutual interaction between
the laser pulse and the wakefield, leaving the electron accel-
eration dynamics for possible future investigation. The interest
in curved channels for laser wakefield acceleration is that the
possibility to bend the laser pulse and/or electron bunch adds
some flexibility in beam transport, which might be useful, e.g.,
in multistage designs.

The reason for increasing the intensity is twofold: We expect
that not only the energy gain increases with increasing laser
intensity but also the efficiency of the acceleration process.
This is because the acceleration (energy transfer from plasma
wave to electron) is limited by dephasing [21], i.e., the slippage
of electrons from the accelerating region of the wakefield
into the decelerating region, which is caused by the fact that
the accelerated electrons inside the plasma propagate faster,
essentially at c, than the laser pulse, which travels at a group
velocity less than c. The energy transfer between the laser pulse
and the plasma wave is determined by their mutual feedback,
which is known to lead to an explosive instability [22], charac-
terized by a timescale that decreases with increasing laser pulse
amplitude. At an intensity around 1017 W · cm−2, the timescale
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Fig. 1. Channel profile. Solid curves are plots of strong and weak channels
(see text for the definition). Dashed curve is the parabolic approximation that is
valid for r close to zero.

of the instability is much longer than the dephasing timescale,
which results in very little transfer of energy between the laser
pulse and the plasma wave during electron acceleration. For
intensities of 1018 W · cm−2, both timescales become com-
parable [23], resulting in significant energy transfer between
the laser pulse and the plasma wave, and possibly in a more
efficient acceleration of electrons. A complicating factor is that,
at higher laser intensities, the instability leads to strong pulse
envelope deformation, which in turn affects the stability of the
accelerating wakefield on the dephasing timescale.

This paper is organized as follows. In Section II, we intro-
duce a slowly varying envelope equation for the laser pulse
envelope dynamics and a quasi-static fluid model for the plasma
response (laser wakefield), which form the basis for all numeri-
cal simulation results presented here. We review known results
for the propagation of short intense laser pulses in plasma,
using the 1-D approximation in Section III and considering
pulse propagation in a straight channel in Section IV. New
results for pulse propagation in curved channels are presented
in Section V. Finally, Section VI is devoted to a summary and
discussion.

II. ENVELOPE AND WAKEFIELD EQUATIONS

Before presenting the coupled equations for the laser pulse
and the wakefield, we find it convenient to introduce the
following notation. We define a radial coordinate r = (x2 +
z2)1/2 − R such that r = 0 corresponds to a circle or circle
segment in the (x, z) plane with radius R, which is the shape
of our curved plasma channel. The angle φ is defined in the
usual way as φ = arctan(x/z). To simplify the problem, we
adopt a 2-D geometry by dropping all y-dependences from
the equations. The equilibrium plasma density np is assumed
to be parabolic close to r = 0 : np(r) = n0(1 + r2/r2

c ) for
r � rc, where rc � R determines the curvature of the density
profile. For the actual density profile used in the simulations,
we take two different forms, as shown in Fig. 1. In the limit of
large r, the density of both profiles is seen to approach zero,
whereas a maximum is observed at r = rc. The reasons for
choosing this type of profile are the following: 1) It is close to
experimentally observed radial density distributions [24], [25],
and 2) a parabolic profile does not allow us to model radiation
leakage from the channel due to the unrealistic limit of infinite
density at large r. The upper curve, which we shall refer to as

a strong channel, has a profile that rises steeper than parabolic
for |r| < rc, whereas the lower curve, which we refer to as a
weak channel, has a profile that rises less steep than parabolic
for |r| < rc. Not surprisingly, our simulation results show that
a strong channel is better at preventing radiation leakage than a
weak channel.

With the usual definition of a as the complex envelope of
the laser potential in dimensionless form, the slowly varying
envelope equation in a curved channel becomes

2
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In the aforementioned equation, ω0 denotes the laser car-
rier frequency, s = Rφ − ct is the comoving coordinate, and
Ωp(r, s, t) is a local, i.e., space- and time-varying, plasma
frequency. It is defined by Ω2

p = 4πne2/mγ, where n is the
density and γ is the Lorentz factor of plasma electrons. The
derivation of the envelope equation can be found in [19].
We only note one additional approximation (iω0 + c∂s)2a ≈
iω0(iω0 + c∂s)a that has been made here in order to speed
up the numerical algorithm for solving the envelope equation.
We have checked that this can be done without changing the
outcome significantly.
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the following quasi-static fluid equation for the plasma response(
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where ψ denotes the dimensionless wakefield potential and
k2

p(r) = 4πnp(r)e2/mc2. This equation is basically the one
given in [26] and becomes exact in the 1-D nonlinear limit and
the 2-D linear limit. Note that we use the wakefield equation
corresponding to a straight channel, which can be justified if
the curvature is negligible for an arc length of several plasma
wavelengths. Indeed, for linear wakefields, it can be shown [19]
that the additional terms are smaller by an order of at least r/R.
In terms of the wakefield potential, the local plasma frequency
is given by
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where a slight difference with the result of [26] is observed. Our
formula for Ω2

p is consistent with energy conservation, where
the wakefield energy density is given by
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and the laser pulse energy density by

|iω0a + c∂a/∂s|2

in units consistent with our dimensionless notation.
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Fig. 2. One-dimensional simulation results. Contour plot of |a|2 for
a2
0 = 0.5. Graphs of relative slippage 〈s〉 + (c − vg)t, laser pulse energy

content, wakefield amplitude (dimensionless), and peak value of |a|2 for
a2
0 = 0.25, 0.5, 0.75, and 1. The curves can be distinguished by the duration

of the simulation, where a longer duration corresponds to a lower initial
amplitude.

III. 1-D APPROXIMATION

For the 1-D simulations, we choose an initially Gaussian
pulse

a(s) = a0 exp
(
−s2/2s2

l

)
where a0 denotes the dimensionless amplitude of the laser pulse
and sl = 7.5 µm is the laser pulse length. With this choice of
pulse length, we get near-resonant excitation of the wakefield
in a plasma with our chosen density n0 = 1018 cm−3. At this
density, the linear group velocity vg = c(1 − 1/γ2

g)1/2, which
corresponds to a Lorentz factor γg = (ncr/n0)1/2 ≈ 42, is de-
termined from the critical density ncr = mω2

0/4πe2, assuming
a laser wavelength of 800 nm.

The 1-D simulation results are shown in Fig. 2, where the
contour plot shows |a|2 as a function of s and t for a2

0 = 0.5,
corresponding to a peak intensity of about 1018 W · cm−2. We
see an increase of the pulse amplitude accompanied by strong
pulse compression, with a very narrow peak being observed
around ct ≈ 7 cm, followed by pulse spreading and envelope
modulation. These features are typical of the explosive feed-
back instability described in Section I. Note that, for reasons
of convenience only, the s-coordinate is given relative to its
average value

〈s〉 =
∫

s|a|2ds∫
|a|2ds

which means that phase slippage effects cannot be easily read
from the contour plot. Instead, one should look at the graph
of 〈s〉 + (c − vg)t versus ct to get a feel for this. This graph
shows the difference in average s-coordinate between the actual
simulation result and a rigid pulse propagating continually at
the linear group velocity vg, with four choices of laser pulse am-
plitude a2

0 = 0.25, 0.5, 0.75, and 1. It is observed that, ini-
tially, the simulated laser pulses move, on average, slightly
faster than the rigid pulse, while later on, they propagate
much slower, and this effect becomes more pronounced with
increasing pulse amplitude.

This observation can be explained as follows. According
to photon kinetic theory [27], [28], it is possible to view the
pulse as a collection of photons with different group velocities
c(1 − Ω2

p/Ω2)1/2, where the photon frequency Ω is given by
a local dispersion relation Ω2 = c2k2 + Ω2

p(s, t), and k is the
photon wavenumber. At early times, when all photons have
frequencies close to ω0, the slippage is determined mostly by
the local plasma frequency. Photons at the head of the pulse,
where Ω2

p ≈ 4πn0e
2/m, are seen to propagate at vg , whereas

photons toward the back of the pulse, where Ω2
p decreases due

to the presence of the wake, are seen to propagate slightly
faster. Thus, the pulse is compressed, and its average velocity
is higher than vg . At later times, the decrease of Ω due to
photon deceleration (i.e., adiabatic frequency redshift in the
time-varying medium) is the dominant effect, and the pulse
slows down as it loses energy to the wakefield. The energy loss
is greater at higher pulse amplitude, as seen in the graph of pulse
energy content versus ct, which explains why the slowdown is
more dramatic at higher a0.

The last two graphs shown in Fig. 2 contain the dimension-
less wakefield amplitude and the peak value of |a|2 as functions
of ct. We note here that the evolution is seen to be similar in all
four cases, but happens on different timescales, in accordance
with the scaling of the explosive feedback instability. The
simulations end at different times tf such that a0tf has a
constant value [29]. For comparison, dephasing in a wakefield
propagating continually at the linear group velocity vg takes
place at ct ≈ 5.8 cm: At this propagation distance, there is a
clear difference between the simulation results for a2

0 = 1/4
and a2

0 = 1, with the latter showing much more energy transfer
between laser pulse and plasma wave.

IV. STRAIGHT CHANNEL

To develop a convenient “mental picture” for the transverse
dynamics, we first neglect the effects of finite pulse length and
channel curvature. This reduces the envelope equation to

2iω0
∂a

∂t
+ c2 ∂2a

∂r2
− Ω2

pa = 0

which has the form of a Schrodinger equation, where the
diffraction term plays the role of the kinetic energy, and Ω2

p

plays the role of the potential. For example, it is well known
that a parabolic plasma channel

Ω2
p =

4πe2n0

m

(
1 +

r2

r2
c

)
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Fig. 3. Simulation results for strong and weak straight channels. Contour plots
of envelope |a|2 (lineout at r = 0) and slice width δr as functions of s and t.

is equivalent to the quantum harmonic oscillator, and its
Hermite–Gaussian eigenfunctions are seen to correspond to
the laser modes of the plasma channel. This gives us another
interpretation of the matching conditions: Matched propagation
occurs if the initial laser distribution is equal to one of the
modes of the channel (often the lowest order mode in practice),
and mismatch occurs for multimode propagation, where cen-
troid or spot size oscillations are the result of beating of several
laser modes.

To describe the effect of finite pulse length, a representation
of the laser distribution in terms of s-slices is useful. Each slice
can undergo spot size and/or centroid oscillations if there is a
mismatch between the slice distribution and the potential at the
slice location (remember that Ω2

p now varies with s as well as
with r). The slice oscillations are not independent, as the shape
of the potential at a given slice is determined by the wakefield
excited by all slices in front of it. Under certain conditions,
this feedback between the slice oscillations and the wakefield
dynamics can lead to instabilities [30].

We now discuss numerical examples of laser pulse prop-
agation in a straight channel, as shown in Fig. 3. For this
simulation, the channel parameters are n0 = 1018 cm−3 as
before, and rc = 125 µm. The initial laser profile is double
Gaussian

a(r, s) = a0 exp
(
−[r − r0]2/2r2

l − s2/2s2
l

)
where a0 is the pulse amplitude, r0 is the laser offset relative
to the channel axis, rl is the spot size, and sl is the pulse
length. We choose a2

0 = 0.5, r0 = 0, corresponding to on-axis
injection, rl = 25 µm, which gives matched propagation in a
parabolic channel, and sl = 7.5 µm as before. Fig. 3 contains
contour plots of |a|2 evaluated at r = 0 and the slice width δr

as a function of s and t. As before, s is given relative to its
average value

〈s〉 =
∫

s|a|2drds∫
|a|2drds

.

The slice width δr is defined by

[δr]2 =
∫

(r − 〈r〉[s])2 |a|2dr∫
|a|2dr

where 〈r〉[s] is a local average of r

〈r〉[s] =
∫

r|a|2dr∫
|a|2dr

.

For on-axis injection in a straight channel, symmetry dictates
that 〈r〉[s] = 0, i.e., there are no centroid oscillations in all
slices.

As all slices are initially matched to the parabolic channel
profile, spot-size oscillations in the very first slices of the laser
pulse, i.e., in a region where wakefield effects are negligible,
are due to the difference in matching conditions between the
parabolic channel and the nonparabolic profiles used in the sim-
ulation (as shown in Fig. 1). Although it is hard to distinguish
in the contour plots on the right-hand side of Fig. 3, the first
slices actually undergo slight spot-size oscillations: Compared
with the parabolic channel, the matched spot size for the strong
(weak) channel is slightly smaller (larger).

Much easier to observe are the spot-size oscillations of slices
further back in the laser pulse, for which the difference in
matching conditions is even greater (parabolic versus nonpar-
abolic profiles plus wakefield excited by preceding slices). For
ct ≤ 5 cm, we observe that the equilibrium spot size, as well
as the period of oscillation, is largest for slices at the front of
the pulse, and they go through a minimum value toward the
back of the pulse. As expected, whenever a slice is contracted,
a corresponding increase in the on-axis value of |a|2 is observed
in the contour plots on the left-hand side of Fig. 3. Apart
from these additional ripples due to the coupling between
longitudinal and transverse pulse dynamics, the contour plots
of |a|2 show exactly the same features as the 1-D plot shown in
Fig. 2: pulse compression and amplitude increase, followed by
pulse spreading and envelope modulation. We have also looked
at the energy transfer from the laser pulse to the wakefield,
which is slightly less efficient compared with the 1-D case, and
the phase slippage behavior, which is similar (simulation results
not shown here). After the time of maximum longitudinal
compression (ct ≈ 7 cm), the transverse dynamics changes
dramatically, and we see that the spot-size oscillations damp
out, while their period decreases.

V. CURVED CHANNEL

As stated in Section I, the main effect of the channel curva-
ture is to shift the radial equilibrium position req of the laser
pulse away from the channel axis. Physically, req is determined
by the balance between the refractive index gradient that bends
the light rays inward and the centrifugal force that pulls them
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Fig. 4. Simulation results for on-axis injection in a curved channel. Graphs of
laser pulse centroid evolution, with solid line corresponding to R = 30 cm and
dashed and dotted lines to R = 75 and 200 cm, respectively.

out of the channel. Mathematically, this is formulated with the
help of an effective potential

Ω2
eff = Ω2

p − 2ω2
0

r

R

or, equivalently, an effective plasma density

neff =
n

γ
− 2ncr

r

R

and the requirement that ∂Ω2
eff/∂r = 0, i.e., the absence of

force. From the aforementioned condition, one can derive the
minimum value of R required for radial confinement of the
laser pulse. In our simulations, we have used three values for
R: 1) a large value (R = 200 cm); 2) an intermediate value
(R = 75 cm); and 3) a small value (R = 30 cm). It turns out
that, for R = 30 cm, only the strong channel is able to confine
the laser pulse. Thus, for this value of R, we have not simulated
propagation in the weak channel.

As expected, we observe that laser pulses injected on the
channel axis undergo centroid oscillations of relatively large
amplitude. This is shown in Fig. 4, which shows the graphs of
the average radial position

〈r〉 =
∫

r|a|2drds∫
|a|2drds

as a function of t for a2
0 = 0.5 and different values of R, with all

other simulation parameters being the same as for the straight-
channel simulations.

Four other interesting observations in Fig. 4 are the follow-
ing: 1) a general damping of the oscillation amplitude; 2) a
variation of the oscillation period with R; 3) an overall drift of
the centroid toward smaller r; and 4) for the R = 75-cm case
in the weak channel, an increase of 〈r〉 above rc at ct ≈ 2 cm,
followed by a decrease below rc at ct ≈ 4 cm, as if the laser
pulse exits and reenters the channel.

To begin with the last point, as exit and reentry of the
whole laser pulse are clearly impossible, there must be another
explanation for this observation. What happens is that, although
a large part of the pulse is indeed lost from the channel, a small
part (corresponding to a 30% energy fraction of the initial laser
pulse) remains inside. The oscillation of this 30% shows up at
ct > 4 cm, when the other 70% has left the simulation box.
What is not clearly visible is that two occasions of pulse loss
from the channel occur for the R = 30 cm case in the strong

channel simulation, corresponding to 20% and 8% of the initial
laser pulse energy.

The overall centroid drift toward smaller r can be understood
as an effect of the curvature of the wakefield wavefronts,
a feature that is common to wakefields excited in plasma
channels [31]. Just as wakefield excitation causes a slice-to-
slice variation in the matching conditions of the spot size, it
is also responsible for slice-to-slice variations in the matching
conditions of the centroid. In other words, the s-dependence
of Ω2

p causes req to be s dependent as well. It turns out that
the curvature always causes req to decrease with decreasing s,
i.e., the wake excited by the head of the pulse deflects the tail
toward lower r.

The variation of the oscillation period with R is an effect as-
sociated with the nonparabolic nature of the density profile used
in the simulation. The frequency ωc of the centroid oscillation
is roughly given by

ω2
c =

c2

ω2
0

∂2Ω2
eff

∂r2

∣∣∣∣
r=req

which is independent of req (and, therefore, independent of R)
for a parabolic Ω2

p, but varies with R for a nonparabolic profile.
For the strong channel, a decrease in R corresponds to a shorter
oscillation period, whereas the weak channel exhibits the op-
posite trend. Finally, the damping of the centroid oscillation
is attributed to the feedback between the laser pulse and the
plasma wave.

The simulation results shown in Fig. 5 have been obtained
with the same parameters as the ones shown in Fig. 4, except
for injection of the pulse around r0 = req, which is the strategy
for avoiding centroid oscillations recommended in [19]. We
have taken the unperturbed profiles of Fig. 1 for the calcu-
lation of req (not the parabolic approximation), which gives
req = 53.1, 29.0, and 12.9 µm at R = 30, 75, and 200 cm
for the strong channel and req = 40.6 and 13.8 µm at
R = 75 and 200 cm for the weak channel.

In Fig. 5, the four features that are worth noting are the
following: 1) a drift of the centroid toward the channel axis;
2) occurrence of pulse centroid oscillations in spite of injection
at r0 = req (despite a much smaller amplitude than those
observed in Fig. 4); 3) a decrease of the timescale of pulse
energy loss and pulse amplitude evolution with decreasing R;
and 4) a dramatic increase of pulsewidth δr for the R = 75 cm
weak-channel simulation.

The explanation of the drift toward smaller r is the same
as before, namely, a deflection of the laser pulse’s tail in the
wakefield excited by the head of the pulse. To investigate the
cause of the pulse centroid oscillations, we show contour plots
of the slice centroid and slice width as functions of s and t
for one particular case (R = 75 cm in a strong channel) in
Fig. 6. In the contour plot on the left-hand side, we observe
that all slices, even the ones in the head of the pulse where
wakefield effects are negligible, undergo centroid oscillations.
Evidently, we cannot explain this in terms of deflection of the
tail of the laser pulse induced by the wakefield of the head, for
in that case, we would observe oscillations in the tail of the
pulse only.
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Fig. 5. Simulation results for off-axis injection in a curved channel. (From top
to bottom) Graphs of laser pulse centroid, laser pulsewidth, laser pulse energy,
and peak value of |a|2. Solid lines correspond to R = 30 cm, and dashed and
dotted lines correspond to R = 75 and 200 cm, respectively.

Fig. 6. Simulation results for R = 75 cm in a strong channel with off-axis
injection. (Top) Contour plots of slice centroid and slice width as functions of
s and t. (Bottom) Profiles of effective density and initial laser pulse envelope.

Instead, we offer the following explanation. Consider the
graph at the bottom of Fig. 6, which shows the initial laser
envelope and the effective density in front of the laser pulse

neff(r) = np(r) − 2ncr
r

R
.

Remember that the effective density is basically the potential
for the radial motion of the laser pulse. Thus, the asymmetry of
neff around r = req in the pulse region gives rise to a net force
in the negative r-direction, which provides the initial impulse
for the centroid oscillation, and this applies to all slices. Note
that, for a weak channel, the initial impulse is in the positive
r-direction, as observed in Fig. 5. There is no net force for
a perfectly parabolic channel, as, in this case, the effective
density

n0

(
1 −

r2
eq

r2
c

+
[
r − req

rc

]2
)

is always symmetric around r = req. Likewise, the matched
spot size at r = req does not vary with R if np is parabolic, and
it becomes smaller (larger) for decreasing R in a strong (weak)
channel. Thus, we expect that an initial spot size of rl = 25 µm,
which is matched for on-axis injection in a parabolic profile, is
too big for propagation in a strong channel. In addition, indeed,
in the contour plot on the right-hand side of Fig. 6, we observe
sizeable spot-size oscillations, even at the head of the laser
pulse where wakefield effects are negligible. We have checked
that it is possible to almost eliminate spot-size and centroid
oscillations in this region by choosing slightly smaller (larger)
values of r0 and rl in a strong (weak) channel.

The decrease in timescale of pulse energy loss and pulse
amplitude evolution with decreasing R can be explained by
the scaling of pump depletion length Ld ∝ (ncr/n)−3/2 with
plasma density n [22]. A shorter pump depletion length is found
at higher plasma density n = np(req), which corresponds to
a pulse equilibrium position req that is farther from the axis,
which in turn corresponds to a smaller value of R. In ac-
cordance with this are the observations (not shown here) of
oscillations in the pulse energy loss rate that occur for on-axis
injection: As the pulse moves in radial direction, it encounters
regions of different plasma densities, and it couples more
efficiently to the wakefield at higher n.

The dramatic increase of δr for the R = 75-cm weak-
channel case turns out to be due to pulse loss from the channel.
Although the bulk of the pulse remains within the channel, the
small fraction that manages to escape (corresponding to 3% of
the initial laser pulse energy) has a disproportionate effect on
the calculation of δr. Later on, when the escaped radiation has
escaped from the simulation box, δr is seen to return to a more
“normal” value.

VI. SUMMARY AND DISCUSSION

In this paper, we have presented simulations of short intense
laser pulses propagating in underdense plasma based on cou-
pled equations for a slowly varying laser pulse envelope and
a quasi-static fluid description for the plasma. In Sections III
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and IV, we reviewed several well-known results for pulse
propagation in the 1-D approximation and for a straight channel
in 2-D geometry. In these sections, we have emphasized those
aspects that are most relevant to the new results of intense pulse
propagation in a curved channel, which we have presented in
Section V.

The 1-D simulations merely confirm that the longitudinal
dynamics of short-pulse propagation in a plasma is determined
by a well-known explosive feedback instability. The timescale
of this instability depends on the laser pulse amplitude, such
that pulses of higher intensity couple more efficiently to the
wakefield on the timescale of electron dephasing, which is the
motivation for extending our investigations from the linear into
the nonlinear wakefield regime.

For the presentation of 2-D straight-channel simulation re-
sults, we have used a helpful “mental picture” of Ω2

p as a
potential for the transverse motion of the laser pulse, while
the feedback between the laser pulse and the wakefield has
been elegantly treated with a subdivision of the laser pulse into
s-slices.

For stable propagation in a curved channel, it is important
to avoid centroid and spot-size oscillations as much as possi-
ble. In principle, the matching conditions are straightforward:
injection of the laser pulse around the equilibrium position req,
which is the minimum of the effective potential Ω2

eff = Ω2
p −

2ω2
0r/R. The matching spot size is determined by the value

of ∂2Ω2
eff/∂r2 at r = req. However, due to the s-dependence

of Ω2
eff , these quantities vary from slice to slice. Furthermore,

due to the curvature of the wakefield wavefronts, there is a
deflection of the tail of the laser pulse in the wakefield induced
by the head, which causes an overall drift of the laser pulse
toward the channel axis.

In our simulations, we have used the following two different
profiles for the unperturbed plasma density (see Fig. 1): a
strong channel with a profile that rises more steeply than the
parabolic one and a weak channel with a profile that rises less
steeply. While there is not much difference in the simulation
results for strong and weak straight channels, we have found
considerable differences in the performance of strong and weak
curved channels. For a radius of curvature of 30 cm and an
on-axis plasma density of 1018 cm−3, only the strong channel
is able to confine the laser pulse. For a radius of curvature
of 75 cm, the weak channel is able to confine the bulk of the
radiation only if the laser pulse is injected at the equilibrium
position, not for on-axis injection.

Generally, for a strong (weak) channel, the periods of the
centroid and spot-size oscillations, as well as the matched
spot size, are functions that decrease (increase) with decreas-
ing plasma channel radius of curvature, and they are smaller
(larger) than for a parabolic channel. Furthermore, the effec-
tive density, which is always symmetric around r = req in a
parabolic channel, becomes asymmetric around r = req in a
nonparabolic channel. This feature causes centroid oscillations
for a laser pulse with an initially symmetric (e.g., Gaussian)
profile if the pulse is injected at a radial offset r0 = req, a
problem that can be solved by choosing a slightly different
value of r0. Last, we have found that the radius of curvature
of the plasma channel influences the coupling efficiency from

the laser pulse to the wakefield, as it determines the value of req

and, therefore, the local value of the plasma density, which in
turn determines the pump depletion length.

Finally, we comment on the possible application of curved
plasma channels to laser wakefield acceleration. The results in
this paper demonstrate that, in principle, a short intense laser
pulse can be guided in a curved plasma channel with efficient
coupling of energy to the wakefield if one carefully observes
the conditions for stable propagation, i.e., injection with a
radial offset close to the equilibrium position with a matched
spot size. The intricate feedback between the laser pulse and
the wakefield is responsible for some unavoidable residual
spot-size and centroid oscillations, as it is virtually impossible
to meet the matching conditions in all slices simultaneously.
Equally unavoidable is a drift of the laser pulse toward the
channel axis. Although these effects need not be detrimental
for the stability of the electron acceleration, one also has to
consider the following effects.

As pointed out in [19], due to the dephasing length being
much shorter than the circle circumference, only a slight bend
can be given to the laser pulse and/or electron bunch in a single
acceleration stage. Another important point is the transverse
stability of the electron motion. Just as the balance between
the refractive index gradient and the centrifugal force keeps the
laser pulse inside the channel, a balance between the wakefield
transverse force and the centrifugal force is required for the
radial confinement of electrons. The magnitude of the required
force increases with increasing electron energy, and the asso-
ciated acceleration gives rise to the emission of synchrotron
radiation [10].

Furthermore, one has to consider the stability of a bunch
of electrons rather than a single particle. For example, the
electrons will almost certainly come out of the channel under
an angle with the channel axis. The question is how predictable
this angle is and how much it will vary from electron to electron.
Furthermore, as different electrons sample different parts of a
highly dynamic wakefield (at least in the nonlinear regime), a
dramatic increase of energy spread may result. All these issues
need to be investigated further in order to assess the feasibility
of laser wakefield acceleration in curved plasma channels.
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