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Propagation of a weakly nonlinear laser pulse in a curved plasma channel
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In this paper, the propagation of a high intensity laser pulse in a curved plasma channel is studied.
The matching conditions, which are different from straight plasma channels, are examined. The
analysis includes a study of centroid and spot size oscillations, relativistic self-focusing, and the
effect of wakefields on the propagation of the laser pulse. The possible application of curved plasma
channels in laser wakefield acceleration is discussed. © 2007 American Institute of Physics.

[DOL: 10.1063/1.2731816]

I. INTRODUCTION

Plasma channels play an important role in laser-plasma
interaction, as they offer a practical solution to the problem
of extending the interaction length beyond the limit set by
geometric diffraction."” A plasma channel can be employed
as an efficient medium for x-ray lasing,3 harmonic
generation,4 or Raman ampliﬁcation.5 Furthermore, a recent
experiment demonstrated GeV electron acceleration in a
channel-guided laser wakefield accelerator for the first time.’
The principle behind plasma channel guiding is that a plasma
column that has a radial density profile with an on-axis mini-
mum can, through the dependence of refractive index on
plasma density, act as a lens for laser light.7 Guiding over
long distances is possible due to a balance between the in-
ward bending of light rays through the refractive index gra-
dient and the outward expansion through geometric diffrac-
tion.

The laser can propagate without significant spot size or
centroid oscillations if it couples into a single eigenmode of
the channel, in which case it is said to be matched. However,
for different spot sizes, off-axis injection or injection under
an angle with the channel axis, sizeable spot size or centroid
oscillations do occur, and the pulse is called mismatched.
Mismatched injection may lead to loss of pulse intensity.
Plasma channel guiding is not the only way to achieve a long
laser-plasma interaction length: alternative methods include
capillary guiding (relying on total internal reflection on the
capillary boundau"y),8 relativistic se:lf—focusing,9 and laser
pulse shaping.lo

As with other types of waveguides, such as optical fi-
bers, it is possible with a plasma channel to guide the light
along a curved path by bending the waveguide. This has
been experimentally demonstrated by Ehrlich et al. for laser
pulses with relatively low peak intensities (up to
10'® W cm™2)."" The authors provide an analytical estimate
for the minimum radius of curvature for confinement of the
laser pulse to the curved channel. In this paper we discuss the
weakly nonlinear regime (laser peak intensities around
10'7 W cm™2), for which relativistic and ponderomotive ef-
fects start to play a role. We expect that it is not possible to
bend laser pulses in the strongly nonlinear regime (peak in-
tensity 10'® W cm™2 and above) in curved plasma channels,
as it becomes increasingly difficult to radially confine the
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laser pulse. Furthermore, strong coupling with the wakefield
will lead to large losses and pulse deformation. The motiva-
tion for this work is to investigate the use of curved plasma
channels for electron acceleration, as, for example, the abil-
ity to bend the laser light and/or the electron bunch may be
interesting for the design of a multistage laser wakefield ac-
celerator. In this paper we only address the propagation of
the laser pulse, leaving the electron acceleration dynamics
for possible future investigation.

The outline of this paper is as follows. In Sec. II, the
envelope equation for a laser pulse propagating in a curved
plasma channel is derived. Subsequently, this equation is
studied in paraxial approximation in Sec. III and finite pulse
length effects are included in Sec. IV. Section V is devoted to
summary and discussion.

Il. ENVELOPE EQUATION

In this section, we derive an envelope equation to de-
scribe the evolution of a laser pulse that propagates in a
circular plasma channel. We simplify the geometry of the
problem by setting d/dy=0 in all equations. Generalization
to three-dimensional geometry, for example, a plasma chan-
nel with a toroidal shape, is straightforward (see the Appen-
dix). A radial coordinate r is defined as r=(x*+z%)"?>~R with
R the radius of the plasma channel and the plasma density is
assumed to be parabolic close to r=0: np(r)=n0(1+r2/rf),
where r.<<R determines the curvature of the parabolic den-
sity profile. A laser pulse with linear polarization in the y
direction is assumed, and the evolution of the vector poten-
tial is described with the wave equation (c?V2-3*/d?)A,
=w§Ay, where w§=417npez/ m, defines the r-dependent
plasma frequency w,. We introduce the obvious change of
coordinates (x,z) —[r, ¢=arctan(x/z)], and assume that A,
is the product of a slowly varying envelope and a rapidly
varying carrier wave eAy/mc2=(l/2)[a(r,¢,t)exp(ik0R¢
—iwyt)+c.c.], where a is given in dimensionless form. Fur-
thermore, we introduce a co-moving coordinate s=R¢@—ct,
and find that
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FIG. 1. Radial density profile used in this paper (solid line), parabolic ap-

proximation (dashed line) and intensity profile of matched Gaussian pulse
(dotted line).
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the wusual envelope equation is

[2' J 2 AL 2 (2)
iwgy— +2c——+c¢"— |la=wa,

O " osat o P
where wy=ck, (approximation of very underdense plasma)
has been used, and a second-order ¢ derivative has been omit-

ted (slowly varying envelope approximation).

lll. PARAXIAL APPROXIMATION

As a first step, effects related to finite laser pulse length
have been omitted; i.e., d/ds=0 is assumed (paraxial ap-
proximation). Keeping terms to lowest order in r/R gives

0 Fa r
(21w05+czﬁ>a= (wi—ZwéI—e)a. (3)

From the similarity between Eq. (3) and the one-particle
Schrodinger equation, one can see that the quantity between
brackets on the right-hand side of the equation plays the role
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FIG. 2. Simulation result of matched pulse in straight channel with ry=0,
ry=43 pm, and aé:O.S.
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FIG. 3. Radial density profile of Fig. 1 (dashed line) and effective density
profile of curved channel with R=1 m (solid line).

of a potential. Therefore, it makes sense to introduce an ef-
fective density n=n,—2n.r/R, which is proportional to this
potential, where n, is the critical density. The minimum of
the effective density, which defines the equilibrium position
of the laser pulse, is located at r=(wgy/ w[,())zrf/R, where
wy0=w,(r=0). This implies that a laser pulse injected around
r=0, which is the usual condition for matching in a straight
channel, will be mismatched and undergo a radial oscillation
around the equilibrium position. If the amplitude of this os-
cillation is large, the approximation of a parabolic channel
may break down. In a realistic plasma channel, this would
lead to attenuation of the laser pulse due to leakage from the
channel. The shift in equilibrium position should be small
compared with the channel radius, which requires r./R
<(wp0/w0)2. This is a much stronger requirement than the
condition r,/R<<1 stated above. We illustrate this point by
introducing a realistic density profile in Fig. 1, which is mod-
eled after the profile of a slow capillary discharge plasma
channel™'* with a 200 pm radius. Also given in Fig. 1 are
the parabolic approximation (with parameters ny=10'8 cm=3,
r,=346 um) and the radial intensity distribution of a Gauss-
ian pulse that is matched to the parabolic density profile. For
comparison, we show the result of a simulation of Eq. (3) in
a straight channel (R — o) with initial condition

a(r) = agexpl— (r— rO)Z/(ZV%)] (4)

is shown in Fig. 2. The parameters for this simulation are
ro=0 (on-axis injection), ry=(cr./w,y)""*=43 um (condition
for a matched pulse in a parabolic channel): a(2)=0.5. In all
simulations presented in this paper, the realistic density pro-
file of Fig. 1 is used, not the parabolic approximation. Figure
2 merely illustrates the point that this makes little difference
for a straight channel, as perfect guiding is observed over a
long propagation distance, albeit with a slight spot size os-
cillation.

Now let us investigate the propagation in a curved chan-
nel with R=1 m, corresponding to the effective density pro-
file of Fig. 3, which shows a relatively large shift in equilib-
rium  position, consistent with  r./R=0.6(w,0/ wy)*.
Therefore, if we use the same initial conditions for the laser
pulse as before (rg=0 um, r;=43 um, a=0.5), it is not sur-
prising to observe strong centroid and spot size oscillations,
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FIG. 4. Simulation results of pulse propagation in curved channel with
R=1 m. Plot (a) corresponds to ry=0, r;=43 um; plot (b) to ry=120 um,
=43 um; and plot (c) to ry=115 um, r;=30 um. For all plots, a3=0.5.

as well as loss of laser pulse intensity due to leakage of
radiation, as shown in Fig. 4(a). In order to avoid centroid
oscillations altogether, we propose to inject the laser pulse
off-axis, around the equilibrium position. Fig. 4(b) shows the
simulation result for ry=120 um (the local minimum of the
effective density), r;=43 wum, and a3=0.5. We still observe
centroid and spot size oscillations, but they are not as severe
as those found in Fig. 4(a). In addition, there is no appre-
ciable attenuation. We do, however, observe a periodic de-
formation of the pulse shape from Gaussian into different
asymmetric shapes. This is most likely caused by the asym-
metric form of the effective density (Fig. 3), for which the
parabolic approximation is valid in a much smaller region
around the equilibrium position than in the case of a straight
channel (Fig. 1). In addition, the curvature at the equilibrium
position is larger for the curved channel than for the straight
channel. Thus, it should be possible to reduce centroid and
spot size oscillations even further by using a smaller spot
size and perhaps adjusting the injection position. This is con-
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FIG. 5. Simulation result of pulse propagation in curved channel, including
relativistic self-focusing, showing the evolution of (a) the vector potential
envelope |a|> and (b) the effective density n. Parameters: ry,=120 um,
r1=20 um, and a%=0.5.

firmed by the simulation result shown in Fig. 4(c), which
corresponds to rp=115 um and r;=30 um. Note also that
there is much less pulse shape deformation than in Fig. 4(b).

For a laser pulse in the relativistic regime (i.e., ay of
order 1) one has to consider the effect of self-focusing. For
simplicity, we consider only relativistic self-focusing, i.e.,
the change of refractive index due to the relativistic mass
correction that stems from the quiver motion, and leave out
ponderomotive self-focusing; i.e. radial electron blowout due
to the light pressure. For a thorough discussion of both types
of self-focusing, see Refs. 15 and 16. Relativistic self-
focusing is modeled by changing the wlz)a term in Eq. (3) to
w al(1+]a])!"2. As a consequence, the effective density be-
comes n=n,/(1+[a]*)"*~2n,r/R. As we expect, the
matched spot size for the self-focusing case to be smaller
than without self—focusing,ls’16 we select the initial condi-
tions ro=120 um, ;=20 um for two different pulse intensi-
ties, corresponding to a(2)=0.5 and a(2)=1.2, and present the
simulation results in Figs. 5 and 6, respectively. These fig-
ures show the evolution of |a|*> and the density. Due to the
feedback from the laser pulse on the effective density, the
centroid and spot size oscillations are seen to be damped, and
the system evolves towards an equilibrium. At high intensity
(the case aé: 1.2) we observe that the equilibrium position is
further from the axis and the equilibrium spot size is smaller
than at low intensity (aj=0.5). These results can be under-
stood as follows. If the peak of the laser pulse is at the
equilibrium position, i.e., at the minimum of the effective
density, then that position is found to be
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FIG. 6. As Fig. 5, with a2=1.2.
2.2
ro=(1 +a%)1/2<&> Q, (5)
wp() R

where we have used a parabolic shape for the channel and
Eq. (4) for the laser pulse. Thus, the equilibrium position
is seen to be further from the axis than in the case without
self-focusing, and more and more so with increasing pulse
intensity. This confirms that very intense pulses cannot be
confined in curved plasma channels due to self-focusing
effects, as stated in Sec. I. Close to r=r, we may write
the effective density as n/ny=C+(r—ry)*/7., where C
=(1=r%/r?)/(1+a})" is a constant and 7, determines the
curvature:

2\3/2.2
S (1+ ao)mrc

7= .
Cl+ a% + a(z)(r(z) + r?)/(Zr%)

(6)

The matching condition for the laser spot size is r,
=(cF,/ )", which can be used to determine 7, from Egs.
(5) and (6). It is found that 7./r, is smaller than 1 and de-
creases with increasing a,. This implies that the spot size is
smaller than without self-focusing, and decreases with in-
creasing intensity.

IV. FINITE PULSE LENGTH

We retain the longitudinal dependence in Eq. (1) and
model the energy loss to the plasma by taking into account
the effect of the wakefield. Again, we assume to be in a
weakly nonlinear regime, so that a linear hydrodynamic de-
scription of the wakefield is adequate, in which case the
equation for the plasma velocity v is'’
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Pv Jd al?
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Replacing the (¢,7) dependence with dependence on s only
(quasistatic approximation), it is found that

o| Por, R Fvg R 9(vy )| o
c 5+ + 5 - + v,
ds® R+rdrds (R+r)*ds\ R Js
_ 3 lal
ards 4’
2(920¢_ﬁzv¢ R 1 _i v_(é_% 2
c 5 5 + + vy
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R PP
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In zeroth-order approximation, one recovers the usual wake-
.17
field equations

ii(ﬁs_@) _
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2

¢ &

- wf) ords v
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o> ot ards wﬁ rds c o) 4
(7)
Denoting the first-order contributions as 0,, etc. yields
2 —
2)25 _ﬁzvd,: r &2v¢,_ R Wy
" ards R+radrds (R+r1)? ds
R>—(R+1r)* v,
(R+r)? o5’
~ ~ ~ 2
820Q_z92v@+&2,+925¢: 1 vy R o,

+ oUr
R+r dr (R+1)?* ds
r (o’fzv, £&2|a|2>

R+r\drds 4 s

Note that these contributions are interesting from a theoreti-
cal point of view: for |a|> symmetric around r=0, 7, is sym-
metric, and 04 anti-symmetric; i.e., opposite to the zeroth-
order contributions. Nonetheless, because they are so much
smaller than the zeroth-order contributions, we have left o,
and U, out of our simulations. The envelope equation be-
comes, to lowest order in r/R,

9 ;LT
2img—+2c——+c" 5 |a
ot osot ar

r 1% &

= [Q§—2E<wé—2icw0£—czg>]a. (8)
Here, Qp(r,s,t) is a localized plasma frequency that takes
into account the coupling between the laser pulse and the
plasma wave. In terms of the wakefield potential, it is ex-
pressed as ) =w>(1—y)+c?/dr’. We have numerically
simulated laser pulse propagation by solving the coupled
equations (7) and (8). A double Gaussian laser profile
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FIG. 7. Simulation result of two-dimensional code, showing longitudinal
envelope dynamics (|a|* integrated over r) and transverse envelope dynam-
ics (|a|? integrated over 5). Laser pulse parameters are a2=0.05, s;=9 um,
ro=115 wm, and r;=30 um, corresponding to matched propagation in
paraxial simulations (see Fig. 4). For definition of co-moving coordinate ,
see text.

a(r,s) =agy exp[— (r - r0)2/(2r%) - s2/(2s%)] 9)

is taken as initial condition, with s;=9 um, aé:0.0S, 7o
=115 um, and r;=30 um (matched pulse conditions taken
from Sec. III), and r,=55 um, and r;=35 wm (mismatched
pulse). The simulation results are presented in Figs. 7 and 8
in the form of contour plots of |a|? integrated over r and s,
which reveal the longitudinal and transverse envelope dy-
namics. In these figures, it is convenient to use a longitudinal
coordinate s=R¢—0t to cancel the slippage that occurs in the
s=R¢—ct frame. This slippage is partly due to the laser
pulse group velocity being less than ¢, and partly a geometric
effect, as points of constant s move with velocity (1+r/R)c
in the ¢ direction. For our simulations, it turns out that
v/c=(1-1/9%)""2 with y=33 is a good choice to track the
laser pulse (for comparison, wy/w,o=41).

As expected, the [|a|*ds plots of the transverse envelope
dynamics show large centroid oscillations in the case of a
mismatched pulse (Fig. 8), and relatively small centroid and
spot size oscillations for a matched pulse (Fig. 7). An inter-
esting feature in both plots is a drift of the centroid towards
the channel axis, which was not observed in the simulation
results presented in the previous section. To explain the ori-
gin of this feature, we plot |a|> and the effective density for
the matched laser pulse at =0 in Fig. 9. The plot of the
effective density n=n,(1-)+(mc*/4me?) &yl Ir*—2n.r/ R
shows that the wakefield wave fronts are curved, as expected
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FIG. 8. As Fig. 7 with ry=55 um and r;=35 um, corresponding to mis-
matched pulse.

for a laser pulse in a plasma channel.'” As a result of this
curvature the equilibrium position, i.e., the local minimum of
the effective density in the r direction, varies with s. This
makes it impossible to perfectly match a laser pulse of the
form of Eq. (9) everywhere along its length. In our simula-
tions for example, the pulse is injected around ry=115 wm,
so that the head of the laser pulse is matched to the unper-
turbed effective density and this part of the pulse can propa-
gate without centroid oscillations, in accordance with the
simulation results presented in Sec. III. However, because of
the curved wakefield the tail of the pulse is mismatched and
undergoes centroid oscillations. The net effect of multiple
centroid oscillations is the drift towards the channel axis that
we observe in Figs. 7 and 8. Similar effects can occur in a
straight plasma channel if the laser pulse is injected off-axis
or becomes susceptible to the hosing instability.18 It is inter-
esting to note that perfect matching, which would avoid both
centroid and spot size oscillations, in general is impossible
for relativistic pulses, even in a straight plasma channel.
The [|al*dr plots of the longitudinal envelope dynamics
show the formation of a narrow peak towards the end of the
pulse at about cr=13 cm and a subsequent broadening of this
feature. This behavior is typical for the evolution of the laser
pulse in a resonant laser wakefield accelerator, which has an
initial pulse length of about half of the plasma wavelength to
maximize the wakefield amplitude. In our case the initial
pulse length is only slightly longer, and the pulse evolution is
very similar."” The peak formation is a characteristic of an
explosive instability caused by the mutual interaction be-
tween the laser pulse and its own wakefield.”” The most
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FIG. 9. Profiles of |a|> and effective density n as functions of r and s at
t=0 for the simulation of Fig. 7. This plot illustrates the curvature of wake-
field wave fronts resulting from the radial density profile.

striking difference between the longitudinal dynamics plots
of Figs. 7 and 8 is the pulse oscillation observed in Fig. 8.
This is most likely caused by the geometric effect described
above: points of constant s (or 5) have a velocity in the ¢
direction that depends on r, so if the pulse experiences ap-
preciable centroid oscillations, as observed in the transverse
dynamics plot of Fig. 8, this will also result in oscillations in
the § frame. Note also that both oscillations in Fig. 8 have the
same period.

V. SUMMARY AND DISCUSSION

In this paper, analytical and numerical studies of bending
of laser light in a curved plasma channel have been pre-
sented. In Sec. III, laser pulse envelope dynamics in a plasma
channel has been studied in the paraxial approximation.
Pulse propagation in a channel with a relatively small radius
of curvature and a realistic plasma density profile has been
simulated to demonstrate how large-amplitude centroid oscil-
lations can lead to attenuation. Off-axis injection of the laser
pulse around its equilibrium position has been proposed as a

Phys. Plasmas 14, 053104 (2007)

means of avoiding these centroid oscillations, as illustrated
in Fig. 4. In Sec. III, relativistic self-focusing and its effect
on the equilibrium position and spot size have also been
discussed. The equilibrium position has been found to shift
outward and the equilibrium spot size to decrease with in-
creasing pulse intensity. In Sec. IV finite pulse length effects
and wakefields have been included. A near-resonant pulse
length has been chosen and it has been found that the longi-
tudinal envelope dynamics are very similar to those of a
pulse in a straight channel. The simulation results for the
transverse envelope dynamics have been found to be similar
to the results in the paraxial approximation, except for a drift
of the laser pulse centroid towards the channel axis, which
we have explained as a wakefield effect.

We now discuss the possible use of a curved plasma
channel for multistage laser wakefield acceleration. First of
all, it is instructive to compare the channel circumference
27R to the length of a single acceleration stage. This length
is given by the dephasing length 2’7TC(1)(2)/ w;O,ZI which is the
distance that the laser pulse travels during the slippage of
electrons from the accelerating part of the wakefield into the
decelerating part, which results from the difference between
the electron and laser pulse velocities. From the condition
that the laser pulse remains confined in the channel, one
deduces the number of dephasing lengths in a circumference
to be much larger than w,r./c, which itself is usually larger
than 1. This implies that, unless one finds a way around the
dephasing problem,zz’23 one can give only a slight bend to
the laser light in a single acceleration stage. From the con-
finement condition one also finds the number of centroid
oscillations that the laser pulse undergoes during one
roundtrip, which is found to be larger than wy/ w,; i.e., much
larger than 1. The ratio of the above expressions, which can
be larger or smaller than 1 depending on the parameters,
determines the number of centroid oscillations that the laser
pulse undergoes in one acceleration stage. At constant r,, this
number scales inversely proportional to plasma density. If it
is much larger than 1, it may be advisable to use the injection
strategy proposed in Sec. III to avoid centroid oscillations
altogether. It is also important that we consider the pump
depletion length, i.e., the distance at which the coupling of
the laser pulse to the plasma wave starts to lead to strong
pulse deformation, which in turn can lead to degradation of
the wakefield. In our simulations (Figs. 8 and 9), this is seen
to occur when a pronounced peak is formed at around ct
=13 cm. In the linear regime (ay<<1), the pump depletion
length is much longer than the dephasing length, by a factor
proportional to 1/ ag.m This implies that, during a single ac-
celeration stage, the laser pulse shape does not change much
and the wakefield does not degrade. The downside is low
efficiency, as only a fraction of the laser pulse energy gets
transferred to the plasma. Interestingly, the same
1/a(2)—scaling holds in the weakly and strongly nonlinear
regimes,19 so in this case the pump depletion length can be
equal to the dephasing length or even shorter,” and the ac-
celeration becomes more energy efficient. However, as
pointed out before, bending laser pulses in plasma channels
becomes problematic for intense laser pulses due to strong
self-focusing. Finally, it should be mentioned that not only
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the laser pulse, but also the electron bunch needs to be con-
fined in the plasma channel during the acceleration, and the
wakefield has to provide the required centrifugal force. The
associated acceleration will give rise to the emission of syn-
chrotron radiation.
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APPENDIX: GENERALIZATION TO THREE-
DIMENSIONAL GEOMETRY

If we include y dependence in the envelope equation, it
becomes

J
2iwg— +2c——+c*| 5+ —+
ot osot o~ R+rodr dy
R2—(R+r)2( , &
+—————|c

J
— + 2icw, ——w2> a
(R+7r)? 0 9s 0

Js?
= le,a,

(o

where r=(x*>+z%)"">=R as before. If one excludes wakefield
effects for the moment, and assumes a parabolic plasma

channel

41nge® P +y?
2 2 _ 0 y
Q =W, = <1+ P 5

m, re

then the envelope equation shows that spot size oscillations
in the r and y directions are decoupled. In this case, the
injection strategy for avoiding spot size and centroid oscilla-
tions in the r direction is the same as in the two-dimensional
case discussed above. If the laser pulse is sufficiently intense
to excite an appreciable wakefield, then a coupling of spot
size oscillations in the r and y directions becomes possible.
For example, a pulse compression in the r direction will lead
to an increase in intensity, which in turn causes self-focusing
in the y direction. However, we specifically avoid a high
pulse intensity in this paper, because the self-focusing pre-
vents bending in plasma channels, as discussed above.
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