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A comparison is made between the interaction of electron bunches and intense laser
pulses with plasma. The laser pulse is modelled with photon kinetic theory, i.e. a
representation of the electromagnetic field in terms of classical quasi-particles with space
and wave number coordinates, which enables a direct comparison with the phase space
evolution of the electron bunch. Analytical results are presented of the plasma waves
excited by a propagating electron bunch or laser pulse, the motion of electrons or
photons in these plasma waves and collective effects, which result from the self-consistent
coupling of the particle and plasma wave dynamics.
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1. Introduction

Plasma is an attractive medium for acceleration of charged particles (Esarey
et al. 1996) due to its ability to sustain large accelerating gradients without
suffering from electrical breakdown, which is a major limiting factor in
conventional accelerators. Suitable drivers for high-amplitude plasma waves
are dense, ultra-short relativistic electron bunches (Chen et al. 1985) or intense
laser pulses (Tajima & Dawson 1979), which are sufficiently powerful to induce
charge separation in plasma and set up a travelling space charge wave or
wakefield behind themselves. Understanding the evolution of these wakefield
drivers as well as the evolution of witness beams, i.e. trailing beams to be
accelerated in the plasma wave, is key to developing plasma-based accelerators.
The dynamics of intense beams in plasma is complicated due to the relativistic,
nonlinear plasma response and the occurrence of instabilities (Keinigs & Jones
1987; Guérin et al. 1995), both of which require fully self-consistent modelling.

The evolution of laser pulses and electron bunches has similarities and
differences, and these are best understood by treating electrons and photons on
equal footing. This can be done in an elegant way by using photon kinetic theory
(Silva & Mendonça 1998), a classical particle description of the photons.
The main idea behind photon kinetic theory is to split a laser pulse into
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quasi-particles that obey the ray-tracing equations of motion, which model the
adiabatic changes in wave number and frequency due to the space and time
variations of the permittivity of the plasma, and group velocity dispersion effects
due to finite bandwidth. The quasi-particles are best thought of as ‘dressed’
particles that represent the collective behaviour of photons in a plasma. A Vlasov
equation for the quasi-particle phase space density can be formally derived from
Maxwell’s equations by assuming that the plasma permittivity varies on space
and time scales that are much longer than the laser wavelength and period,
respectively. This is usually the case for laser pulse propagation in underdense
plasma. The representation of a laser pulse with space and wave number
coordinates enables a direct comparison with the phase space evolution of a
bunch of relativistic electrons.

In this paper, we introduce all the aspects of the interaction step by step,
restricting ourselves to one-dimensional geometry, as the length of this paper
does not allow a full discussion of three-dimensional aspects of the problem. We
begin with the plasma response to a given driver, which can be either a laser
pulse or an electron bunch, in §2. Usually the driver sets up a wakefield, so we
proceed with describing electron and photon motion in wakefields in §3. We then
introduce distribution functions to calculate the wakefield sources in a self-
consistent way, so that feedback from the particles on the plasma wave is taken
into account. This gives rise to collective effects, two examples of which will be
described in §4. The first example is beam loading, i.e. the effect that a witness
beam takes energy from a given wakefield by setting up its own plasma wave that
(partly) cancels the wake wave. The second example is the evolution of a short
driver in its own wakefield. A summary and discussion of the results is offered in §5.
2. Wakefields

In this section, we describe the travelling space charge waves or wakefields driven
by a laser pulse or relativistic electron bunch that propagates in a plasma. For
the plasma electron dynamics, we use the cold fluid model in the quasi-static
approximation (Ting et al. 1990). Plasma ions are assumed to be stationary and
to provide a neutralizing background with density n0, which is used to define the
ambient plasma frequency up by the relation u2

pZ4pn0e
2=m. The continuity

equation for the plasma electron density n(z, t) is vn=vtCvðnvzÞ=vzZ0, where
vzZpz/gm is the longitudinal velocity, pz(z, t) the longitudinal momentum and
g(z, t) the Lorentz factor, which contains a contribution from the quiver motion
in the laser field g2Z1Cp2z=m

2c2Ce2A2
t=m2c4, as follows from identifying

the perpendicular momentum ðptZe ðAt=c with the vector potential ðAt that
describes the electromagnetic fields of the laser pulse. The equation for the
longitudinal momentum is vpz=vtZev4=vzKmc2vg=vz, where 4 denotes the
electrostatic potential. The vg=vz-term represents the ponderomotive force,
while the vf=vz-term is the electrostatic field. The fluid model is completed with
Poisson’s equation v24=vz2Z4peðnCnbKn0Þ, where nbðz; tÞ is the density of the
relativistic electron bunch. The quasi-static approximation consists of replacing
the full ðz; tÞ-dependence of all plasma quantities with a dependence on zZzKct
only. This means that each element of the plasma electron fluid responds in the
same way to the driver of the plasma wave as it passes by. This approximation is
Phil. Trans. R. Soc. A (2006)
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only valid if changes to A2
t or nb can be neglected during the time it takes the

laser pulse or electron bunch to propagate a distance equal to its own length, i.e.
if the driver evolves slowly in the co-moving frame. The quasi-static
approximation leads to the relation e4ZðgK1Þmc2Kcpz , which enables all
plasma quantities to be expressed in terms of A2

t and 4, for example
gZ ½1CfCð1Ca2Þ=ð1CfÞ�=2, where the potentials have been cast in
dimensionless form (fZe4=mc2, ðaZe ðAt=mc2). Usually, the plasma is taken
to be unperturbed (pzZ0;nZn0) in front of the wakefield driver. An important
quantity is the space- and time-varying plasma frequency Up, which takes into
account relativistic and ponderomotive effects:

U2
p Z

4pne2

gm
Z

u2
p

1Cf
: ð2:1Þ

Due to the identification v=vzZv=vzZKð1=cÞv=vt, the fluid model reduces to a
single wakefield equation

v2f

vx2
Z

1

2

1Ca2

ð1CfÞ2
K1

� �
C

nb

n0
; ð2:2Þ

where a dimensionless coordinate xZupz=c has been introduced. In source-free
regions, i.e. where aZ0 and nbZ0, the wakefield equation has an invariant
(Teychenné et al. 1994)

CZ
1

2

vf

vx

� �2

C
f2

1Cf

� �
Z

E2
0

2
; ð2:3Þ

where E0 is the amplitude of the dimensionless electric field vf=vx. From
equation (2.3) it is straightforward to derive expressions for the extrema fG of
the potential in terms of E0

1CfGZ 1CE2
0=2GE0ð1CE2

0=4Þ1=2 Z ½E0=2Gð1CE2
0=4Þ1=2�2; ð2:4Þ

which will be used in some of the calculations presented below.
3. Equations of motion

In this section, we present the equations of motion for electrons and photons that
interact with wakefields. In §2, we introduced the coordinate zZzKct that
moves with the speed of light in vacuum. In this section, it is useful to redefine
this coordinate zZzKvrt as moving with the phase velocity of the wakefield,
which we call the resonant velocity vr. For calculating the shape of the wakefield,
as done above, the approximation vrzc is allowed. However, for calculating the
motion of accelerated electrons or photons, the difference between vr and c is
important to account for phase slippage with respect to the wakefield. It is
convenient to define the resonant Lorentz factor grZð1Kb2r ÞK1=2, with brZvr=c.
It is straightforward to derive the electron equations of motion

dz

dt
Z

Pz

gm
Kvr;

dPz

dt
Z e

v4

vz
K

e2

2gmc2
vA2

t

vz
; ð3:1Þ
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Figure 1. Phase diagrams for dynamics in a plasma wave, where (a) shows electron orbits and (b)
shows photon orbits. The dimensionless plasma wave amplitude is E0Z0:1 and the resonant
Lorentz factor is grZ10.
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from a Hamiltonian HeZgmc2KvrPzKe4 (Reitsma et al. 2001) with canonical
coordinate and momentum variables (z;Pz). Note that here the notation g is
used for the Lorentz factor of an individual electron with coordinates zðtÞ and
PzðtÞ, rather than for a field gðz; tÞ that depends on space and time.

Using the solution for f found in the previous section, we can construct a phase
diagram for theHamiltonianHe (Esarey&Pilloff 1995). As seen in figure 1, there are
closed orbits inside the separatrix and open orbits both above and below the
separatrix. The orbits below the separatrix describe the motion of electrons that
are too slow to be captured in the wave, e.g. the orbit corresponding to the plasma
electron fluid motion. The orbits above the separatrix correspond to the motion of
electrons that are outrunning the wave. The orbits inside the separatrix describe
the motion of electrons that are trapped inside the wave. For orbits inside the
separatrix, one defines the turning points by the condition dz=dtZ0: at these
points the backward phase slip of the electron changes to forward slip or vice
versa. As seen in figure 1, these points are found at Pz=mcZbrgr. Points of
minimum and maximum energy, defined by dPz=dtZ0, are found at fZfG.
Equilibrium points are found where dz=dtZ0 and dPz=dtZ0 simultaneously,
with fC corresponding to stable equilibrium (O-points) and fK corresponding
to unstable equilibrium (X-points). The value of Pz on a particular orbit with
HeZhemc2 at a particular phase, characterized by fZf0, is given by

Pz=mcZbrg
2
r ðhe Cf0ÞGgr½g2

r ðhe Cf0Þ2K1�1=2: ð3:2Þ

In particular, the separatrix corresponds to heZ1=grKfK and the maximum
and minimum values of Pz on the separatrix, denoted PG, correspond to
f0ZfC. It is interesting to evaluate PG in the regime of high plasma wave
amplitude grDf[1

PC=mcz2grð1CgrDfÞ; PK=mczð1=DfKDfÞ=2; ð3:3Þ

where gr[1 has been used, and Df is short for fCKfKZE0ð4CE2
0 Þ1=2. At

DfO1, which corresponds to E0Oð51=2K2Þ1=2z0:486, it is found that
PK!0. The results in the low plasma wave amplitude regime grDf/1 are

PG=mczgr½brGð2grDfÞ1=2�: ð3:4Þ
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As mentioned in the introduction, for describing the motion of photons in plasma
waves we use the ray-tracing equations

dz

dt
Z

c2k

U
Kvr;

dk

dt
ZK

1

2U

vU2
p

vz
; ð3:5Þ

which are derived from a Hamiltonian HpZUKvrk. The dependence of the fre-
quency U on the phase space coordinates is given by a local dispersion relation
U2Zc2k2CU2

p. The identification of wave number with momentum and
frequency with energy establishes the similarity between the dynamics of
electrons and photons in plasma waves and explains the use of the terms ‘photon
acceleration’ and ‘photon deceleration’ for, respectively, the frequency upshift and
downshift of photons. The effective mass mp of a photon in a plasma, given by
mpZZUp=c

2, is seen to depend on the position of the photon in the wave due to
the dependence of Up on z. The equivalent of g is U=Up, which also depends on the
position of the photon in the wave.

Using the solution for f found in §2, we can construct a phase diagram for Hp

(Mendonça & Silva 1994) in the same way as we did for He. As seen in figure 1,
the same classification of orbits (inside, below or above the separatrix) applies to
the photon Hamiltonian. The points of maximum and minimum frequency are
given by the condition dk=dtZ0, corresponding to fZfG, which is equal to the
condition for points of maximum and minimum electron energy found above. The
turning points, defined by dz=dtZ0, are found at ck=UpZbrgr. Interestingly,
the value of k depends on the phase of the wave due to the z-dependence of Up.
This is in contrast with the electron case, where the value of the momentum at
the turning point Pz=mcZbrgr does not depend on z. The value of k on a particular
orbit withHpZhpup at a particular phase, given by fZf0, is given by

ck=Up Zbrg
2
rhpð1Cf0Þ1=2Ggr½g2

rh
2
pð1Cf0ÞK1�1=2: ð3:6Þ

The separatrix corresponds to grhpZð1CfKÞK1=2 and the minimum and maximum
wave number on the separatrix are denoted kG. In the limit of high plasma wave
amplitude 1CfC[1 or E0[1=4, the expressions for kG are

ckC=upz2grð1CfCÞ1=2; ckK=upz½gr=ð1CfCÞ3=2Kð1CfCÞ1=2=gr�=2; ð3:7Þ

where gr[1 has been used. The condition for kK!0 is given by 1CfCOgr,
corresponding to E0Og

1=2
r Kg

K1=2
r . Finally, in the low plasma wave amplitude limit

Df/1 it is found that

ckG=upzgr½brGðDfÞ1=2�: ð3:8Þ

4. Collective effects

The motion of a group of electrons or photons, i.e. the evolution of an electron
bunch or laser pulse, is conveniently expressed in a distribution function
fbðPz ; z; tÞ for the electron bunch or fpðk; z; tÞ for the laser pulse. The distribution
function obeys a Vlasov equation, namely

vfb
vt

C
vfb
vz

vHe

vPz

K
vfb
vPz

vHe

vz
Z 0; ð4:1Þ
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for the electron bunch and

vfp
vt

C
vfp
vz

vHp

vk
K

vfp
vk

vHp

vz
Z 0; ð4:2Þ

for the laser pulse. To model collective effects, one needs a self-consistent
description of the interaction of electrons and photons in plasma, which is
obtained when the Vlasov equations are coupled to the wakefield equation by
deriving the wakefield sources from the distribution functions. The electron
bunch density is calculated from the electron bunch distribution by integration
over the momentum variable

nbðz; tÞZ
ð
fbðPz ; z; tÞdPz ; ð4:3Þ

while the spatial envelope of the vector potential involves a weighting with 1=U
as follows

a2ðz; tÞZ c

ð
fpðk; z; tÞ
Uðk; z; tÞ dk: ð4:4Þ

Below we present two examples of collective effects.

(a ) Beam loading

Beam loading (Wilks et al. 1987) is the effect that a witness beam takes energy
from a given plasma wave by setting up its own wakefield, i.e. a second plasma
wave that (partly) cancels the first wave. For the moment, we neglect the
evolution of the first wave due to the feedback from the plasma on the drive
beam.

(i) Electrons

Let the witness be an electron bunch, which we will take to be infinitely short
nbðxÞ=n0ZqbdðxKxbÞ, where qb denotes the dimensionless charge of the bunch
and xb the position of the bunch in the plasma wave. The rate of energy transfer
from the plasma wave to the bunch is equal to the difference across the bunch of
the wakefield invariant C defined in equation (2.3). The dimensionless electric
field vf=vx makes a jump of magnitude qb across the bunch, from which the
magnitude of the jump in C is calculated to be DCZqbvf=vxðxbÞKq2b=2. Thus, the
electric field acting on the bunch is effectively vf=vxKqb=2, i.e. the sum of
the prescribed field and a constant decelerating field due to the bunch’s own
wakefield. If the sign of DC is positive, i.e. if vf=vxðxbÞOqb=2, then the bunch
gains energy from the wave. If qbO2E0, the bunch can not take energy from the
wave at any phase. For calculating the total energy transferred from the wave to
the bunch, one needs to know the time dependence of xb, i.e. the phase slippage of
the electron bunch. In the limit g[gr, one may take vzZc for all bunch
electrons, which leads to dxb=dtz1Kbrz1=ð2g2

r Þ, where tZupt is the
dimensionless time variable. This gives the following estimate for the energy
transfer (in dimensionless units)

ðT
0

qb
vf

vx
½xbðtÞ�K

q2b
2

� �
dtZg2

r ð2qbDfKq2bDxÞ; ð4:5Þ
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with DxZxbðTÞKxbð0Þ and DfZf½xbðTÞ�Kf½xbð0Þ�. The duration T of the
interaction is limited by phase slippage in the wakefield Dx!p, which limits the
driver propagation distance to the dephasing length g2

rlp (Reitsma et al. 2001),
lpZ2pc=up being the plasma wavelength. Given an initial condition xbð0Þ and
the duration T of the interaction, one may differentiate equation (4.5) with
respect to qb to find the amount of charge that maximizes the energy transfer.
This gives qbZ ~EZDf=DxZvf=vx½xbð ~TÞ�, where ~T2½0;T � is some intermediate
time.The last formula implies that efficient energy transfer requires qb!E0, which is
known as the beam loading limit. At qbZ ~E, the fraction of energy transferred from
the wakefield to the bunch is ~E

2
=E2

0 .
(ii) Photons

Now let the witness be an infinitely short laser pulse. As the magnitude of the
wakefield excited by the photons depends on their frequency, let us first consider
a monochromatic distribution, so that fpZNpd½xKxmðtÞ�d½k KkmðtÞ� corre-
sponds to a single macro-photon, where Np denotes the number of photons in the
bunch and ðxm; kmÞ is the worldline of the macro-photon. The vector potential
envelope is a2ðxÞZupNpdðxKxmÞ=U, so the magnitude of the jump of the
electric field across the bunch, which we may use to define an equivalent charge qp
(Mendonça et al. 1998) for the laser pulse, is equal to qpZupNp=½2Uð1CfÞ2�. As
expected, the photon equivalent charge scales linearly with the number of photons,
just like the electric charge is proportional to the number of charged particles. In
addition, the equivalent charge also depends on the photon frequency and on the
photon position in the wave. From the jump in the electric field, it is found that
DCZupNpvf=vx=½2Uð1CfÞ2�Ku2

pN
2
p=½8U2ð1CfÞ4�, with all quantities evalu-

ated at kZkm, xZxm. Thus

dU

dt
ZK

1

2U

vU2
p

vx
K

U8
pNp

8u5
pU

2
; ð4:6Þ

where the first term is the photon energy gain or loss in the prescribed field, while the
second term represents the photon energy loss in its own wakefield. Net energy gain
occurs if upNp=U!ð4=3Þvð1CfÞ3=vx. As the photon distribution cannot be
simultaneously localized in time and frequency, wemust consider generalization to a
pulsewith finite bandwidth,which can be thought of as a collection ofmacro-photons
with different km. For a distribution fpZdðxKxmÞ~f ðkÞ, the energy transfer to a
macro-photon is

dUk

dt
ZK

1

2Uk

vU2
p

vx
K

1

8Uk

U8
p

u5
p

ð ~f ðk 0Þ
Uk 0

dk 0; ð4:7Þ

where the pulse energy loss in its ownwakefield is now seen to involve an integral over
the k-distribution. Unfortunately, neither equation (4.6) nor equation (4.7) can be
solved analytically. However, it is straightforward to check that the electron result is
recovered if we assume that the photon initial frequency u0 is large compared to the
gain in frequency and the plasmawave amplitude is small. In this case, the equivalent
charge qp becomes independent of the photon frequency and position, just like the
electron bunch charge, and approaches upNp=2u0 (as Uzu0 and jfj/1).
Phil. Trans. R. Soc. A (2006)
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Consequently, we may define the photon beam loading limit qp!E0, which is found
from the energy transfer

g2
r

upNp

u0

DfK
upNp

2u0

� �2

Dx

� �
Zg2

r ½2qpDfKq2pDx�; ð4:8Þ

where the photon velocity has been approximated with c, so that dxm=dtz1=ð2g2
r Þ.
(b ) Short driver evolution

We now consider the feedback from the wake on a wakefield driver as it
propagates in the plasma. The duration of the driver will be taken short as
compared to a plasma period. For an infinitely short driver, we can apply the
results from the previous subsection, as we may regard such a driver as a witness
beam in a wakefield of zero amplitude.
(i) Electrons

As found above, the effective electric field on an infinitely short electron bunch
due to its own wakefield is equal toKqb=2, where qb is the dimensionless bunch
charge. Consequently, the bunch loses energy at a constant rate and is depleted
at uptZ2g0=qb, where g0 is the average initial Lorentz factor of bunch electrons.
If the bunch length is finite, but still short compared to the plasma wavelength,
the electric field varies continuously from 0 at the front of the bunch to
approximatelyKqb at the rear. The consequence of the electric field variation is
that electrons lose energy at different rates depending on their position within
the bunch, which gives rise to a build-up of energy spread and, ultimately, to
bunch lengthening due to velocity dispersion. The time at which bunch
deformation becomes important is when the electrons in the rear of the bunch,
whose energy loss rate is highest, have lost most of their energy, which is at
uptzg0=qb. It is assumed that the energy differences induced by the wakefield
are large compared to the initial energy spread, so that velocity dispersion effects
due to the latter can be neglected. Unless the bunch charge is very small
(qbg0/1), the energy depletion timescale is seen to be much shorter than the
dephasing timescale for a witness bunch accelerated in the wakefield, whose
phase velocity is estimated with grzg0.
(ii) Photons

The interaction of a short laser pulse with its own wakefield leads to an explosive
instability (Bulanov et al. 1992), as the drop in photon frequency increases
the energy transfer rate from the laser pulse to the plasma. Taking a prescribed
wake of zero amplitude, equation (4.6) reduces to dU=dtZKu4

pNp=8U
2, with

solution UðtÞ=u0Zð1Kt=tnlÞ1=3, where u0 is the initial frequency and tnl is the
nonlinear energy depletion timescale, given byuptnlZð8=3NpÞðu0=upÞ3Zð4=3qpÞ
ðu0=upÞ2. As in the case of an electron bunch, the electric field variation across a
laser pulse with finite length makes the photon energy loss rate phase-dependent,
which in turn leads to group velocity dispersion and laser pulse deformation. This
effect becomes important when photons in the rear part of the laser pulse have lost
most of their energy, i.e. when t=tnlZ1K21=2=4z0:65. Estimating the wakefield
Phil. Trans. R. Soc. A (2006)
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phase velocity with grzu0=up, we find that the energy depletion timescale
becomes comparable to the dephasing timescale of a witness beam at
qpZqcrz3p=2. For a laser drive pulse with a large amplitude, characterized by
qp[qcr, the situation is identical to the case of an electron bunch driver, i.e. the
depletion timescale is much shorter than the dephasing timescale. For a laser pulse
with a small amplitude, characterized by qp/qcr, the depletion timescale is much
longer than the dephasing timescale. In this case, the acceleration process is very
inefficient in the sense that dephasing prevents the transfer of a large fraction of the
driver energy to the witness.
5. Summary and discussion

In this paper, we have made a comparison between the interaction of short laser
pulses and relativistic electron bunches with plasma waves. Such a comparison is
based on photon kinetic theory, i.e. a description of the laser field in terms of
classical particles, which enables a direct comparison with the phase space
evolution of the electrons. From the ray-tracing equations, one is able to define
the equivalent of mass and energy for photons in plasma waves, which naturally
leads to the concept of ‘photon acceleration’ in a plasma wave. By comparing the
wakefields induced by short laser pulses and short electron bunches, one can
define an effective charge for a photon in a plasma wave. This gives rise to a
definition of photon beam loading, i.e. a limit on the number of photons that can
be accelerated on a given plasma wave, analogous to electron beam loading.

We now comment on the differences between electrons and photons
interacting with plasma. These differences stem from the qualitative difference
between the ways in which photons and electrons excite plasma waves. As a
measure of the strength of the interaction, we may use the jump in electric field
across an infinitely short electron bunch or laser pulse, as calculated in §4. For
electrons, the mechanism of plasma wave excitation is the Coulomb repulsion
between bunch electrons and plasma electrons. The magnitude of the jump is
proportional to the number of electrons in the bunch, irrespective of the bunch
energy or its position in the plasma wave, as expected from Gauss’ law. For
photons, the magnitude of the jump becomes smaller at higher values of the
photon frequency U or at lower values of U2

p. Both scalings can be understood by
recalling that the mechanism of plasma wave excitation by a laser pulse is
through the ponderomotive force. The ponderomotive force scales roughly with
the vector potential envelope a2fNp=U, which explains why, at the same
number of photons Np, the ponderomotive force is less effective at higher
frequency. Also, the ponderomotive force is derived from the local plasma
response to the high-frequency electromagnetic oscillation (i.e. the quiver
motion, described by ðptZe ðAt=c). As U2

p is nothing but the relativistically
corrected local plasma electron density, the spatial dependence through U2

p

reflects that the plasma wave is excited less efficiently if fewer electrons
participate in the quiver motion.

From the comparison of the wakefield excitation mechanisms, it is
straightforward to explain the difference in the dynamics of photons and
electrons in plasma waves. This is because the mechanism of energy transfer from
a given plasma wave to the particles is beam loading, i.e. the excitation of a
Phil. Trans. R. Soc. A (2006)
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wakefield that (partly) cancels the given plasma wave, as shown in §4. The
dependence of the equivalent mass, energy and charge of a photon in a plasma
wave on its position in the wave stems from the dependence of its interaction on
the local plasma electron density. The frequency dependence implies that photon
acceleration in plasma waves is inefficient compared to electron acceleration, as
the accelerating force decreases with increasing photon energy. This explains
why different scalings for the maximum energy or frequency on the separatrix are
found in §3: the electron maximum energy, 2ð1CgrDfÞ in units of the resonant
energy grmc2, is seen to be much larger than the photon maximum frequency,
2ð1CfCÞ1=2 in units of the resonant frequency grup. The plasma wave amplitude
thresholds for trapping counterpropagating photons or electrons from the bottom
of the potential well (i.e. kK!0 or PK!0) are also seen to scale differently with
gr. The fact that for electrons the threshold is much lower, roughly by a factor
2g

1=2
r , emphasizes the point that electrons are, in a sense, ‘easier to accelerate’.
Finally, we have discussed the interaction of a short plasma wave driver with

its own wakefield, and we have found qualitatively different behaviour for
electrons and photons. As the energy loss rate for photons depends on their
frequency, the energy depletion from a short laser pulse accelerates and is
explosively unstable. In contrast, the energy loss rate of a short electron bunch is
approximately constant, as long as velocity dispersion effects can be neglected.
By comparing the energy depletion timescale with the dephasing time of an
accelerated witness beam, we have found that acceleration driven by an electron
bunch is usually limited by the driver energy depletion. In contrast, dephasing is
usually the limiting factor for acceleration driven by a laser pulse, unless the
pulse has a high amplitude, i.e. if

Ð
a2ðxÞdx[1.
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