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Previous authors have proposed various envelope equations to describe the behavior of an
electromagnetic pulse generating a wakefield. In general these retain second-order derivatives, the
reason being that the eikonal contains the initial wave frequency. Here it is shown that if the
evolution of the wave frequency is followed using ray-tracing equations, a first-order evolution
equation is obtained. It can be shown with this formalism that wave action is conserved and the
energy lost from the electromagnetic wave can be explicitly accounted for in terms of energy gained
by the plasma. The energy balance equations suggest that an electron bunch which will extract
energy efficiently from a wakefield can be at least as efficiently accelerated by direct interaction
with the electromagnetic pulse. ©2004 American Institute of Physics.@DOI: 10.1063/1.1638753#

I. INTRODUCTION

Various envelope equations have been proposed to de-
scribe the propagation of a high amplitude laser pulse in a
plasma and the way in which it evolves due to excitation of
a plasma wake.1–3 In all of these cases the equations are of
second order, so that the normal objective of an envelope
equation, to reduce the system to first order, is not fulfilled.
The reason for keeping second-order terms is to retain essen-
tial features of the physics. The objective of this paper is to
show that it is possible to construct a consistent first-order
equation which can be shown to have an energy conservation
law in which energy transferred to or from the electromag-
netic pulse is exactly accounted for by changes in the energy
of the background plasma and the electrostatic fields associ-
ated with it. The key is to use ray tracing to follow the
evolution of frequency and wavenumber following the pulse.
These exact values are then used in the eikonal. The usual
equations for beat wave generation are shown to be in agree-
ment with the general result. There is also a conservation law
which corresponds to conservation of the number of quanta
~or wave action if a classical picture is preferred! as proposed
in the development of the theory of photon acceleration and
deceleration.4,5 While the idea of photon deceleration is often
used to explain the loss of energy of a pulse driving a wake-
field, the detailed demonstration that the energy lost by this
process is exactly accounted for by the energy gain of the
plasma is, as far as we are aware, new.

Turning to the problem of electron acceleration, we will
show that if it is possible to generate a bunch of relativistic
electrons of a length, shape and density necessary to extract
energy from a wakefield with any reasonable degree of effi-
ciency, then it should be possible to put energy directly into

the electrons from the electromagnetic pulse with the same
or greater efficiency. What is needed is a bunch of electrons
whose density is high enough to slow the laser pulse to the
speed of the electrons. If this is done then a large part of the
laser energy can be transferred to the electrons. Some quali-
tative considerations of the effect in real three-dimensional
systems indicate that it may also be possible to compress and
focus the electrons. This scheme differs from other proposals
for vacuum acceleration which are based on single particle
trajectories in a focused laser beam8 since an essential fea-
ture is that the electron bunch is dense enough to act like a
non-neutral plasma and affect the propagation of the laser
pulse. Perhaps the scheme closest to this is that of Startsev
and McKinstrie9,10 who propose ponderomotive acceleration
of electrons with a laser beam slowed below the speed of
light in an underdense background plasma. Here the acceler-
ated electron bunch is supposed dense enough to slow the
wave itself.

II. THE ENVELOPE EQUATIONS AND CONSERVATION
LAWS

As shown in the papers on wakefield acceleration cited
previously, the vector potential associated with the laser
pulse obeys the wave equation

S ]2

]t2 2c2¹2DA52vp
2A, ~1!

where
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ne2

«0mg
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The plasma frequency is defined so as to contain the relativ-
istic correction to the electron mass. For our purposes it will
be simplest to assume the wave to be circularly polarized, so
that on the short scale length of the electromagnetic waveg
is constant and the wave propagates just like a linear wave
with an increased electron mass. In the case of a linearly
polarized wave there are complications associated with the
generation of harmonic components. These are problems we
do not wish to address. For a linearly polarized waveg is
best thought of as an average value and the intensity to be
such that harmonic distortions to the wave are not important.
It will be convenient to takeA to be normalized to be in units
of mc/e, particle momentum in units ofmc and the scalar
potentialf in units ofmc2/e. Similarly, velocity, momentum
and energy will be scaled toc, mc and mc2, respectively,
and distances toct.

To see how the frequency and wavenumber vary as we
follow the pulse~or different parts of the pulse if we wish to
see how its shape evolves! we use the standard ray-tracing
equations,6,7
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The dispersion relation of the wave isD(r ,t,k,v)50, and in
our problem

D5v22vp
2~r ,t !2k2c2. ~6!

According to the standard expression for energy density in a
wave,7 the energy density in the electromagnetic pulse is
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which in terms ofA is
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~with energy in units ofmc2 if A is normalized as described
above!. If we take the wave to be propagating in a cold
plasma then the energy flux is just the Poynting vector or, in
terms of the vector potential,

m«0

e2 vkc2A2.

As would be expected the ratio of this to energy density is
kc2/v, the group velocity.

We now make an eikonal approximation with

A5a~r ,t !exp„ic~r ,t !… ~8!

and

ik5“c,

iv52
]c

]t
.

As is normal, the dependence ofa on the space and time
variables is supposed to be on longer scales than the rapid
variation in the eikonal, so that second derivatives ofa can
be neglected. The point to notice here and where we differ
from the authors cited previously is that we takek andv to
be exact values, following the pulse, and not based on the
initial wave frequency. The latter procedure can be adopted,
but then second-order derivatives have to be kept to get the
frequency shift.

If we now put ~8! into ~1! in the usual way, we get

2c2~k"“ !a1c2~a"“ !k12v
]a

]t
1

]v

]t
a50, ~9!

which is the envelope equation we seek. We now derive
some conservation laws from this. First, we multiply it bya*
then add the result to its complex conjugate, the result being

“".~kc2a2!1
]

]t
~va2!50,

wherea2 is used to denoteuau2. Introducing the group ve-
locity we obtain

“"~vgva2!1
]

]t
~va2!50. ~10!

This is a simple evolution equation for the pulse amplitude.
Since the energy density in the pulse is, as discussed above,
proportional tov2a2, the quantityva2 can be interpreted as
the density of wave quanta, or in classical terms the wave
action. Equation~10! simply says that quanta are conserved,
taking them to be convected with the group velocity.

Now, let us use~10! to consider energy conservation. To
do this we needv2a2 inside the derivatives, so we write the
equation in the equivalent form

“"~vgv
2a2!1
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where d/dt is the total derivative moving with the group
velocity. From~5! and ~6! this is
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From the form of this it is clear that the right-hand side
~multiplied bym«0 /e2) represents the rate of energy gain~or
loss if it is negative! by the electromagnetic wave. Now, to
complete the demonstration that we have a self-consistent
formulation, we need to show that this is the energy lost by
the plasma and the slowly varying electric and magnetic
fields associated with it.

Sincevp
2 is ne2/«0mg we have
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Now we introduce equations which describe the slow varia-
tion of the electron fluid, derived just as in standard consid-
erations of the wakefield. Using

a25g22p221, ~14!

with p the particle momentum excluding the rapid oscillation
in the electromagnetic field, we get
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From the particle conservation equation,
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the momentum equation,

]~p1A0!

]t
5“f2“g

~where the reversal of signs from normal in the potentials is
because of the negative electron charge! and the fact that
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we obtain
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HereA0 andf are the vector and scalar potential associated
with the slowly varying fields produced by the plasma. Now
note that np/g "(“f2 ]A0 /]t) is proportional to J"E0
whereJ is the current~assuming the ions, if there are any
present, to be stationary in the laboratory frame in which we
are working! and E0 is the electric field arising from the
slowly varying potentials. So finally we obtain
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,
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with Wem the energy in the slowly varying electric and mag-
netic fields. The left hand side here is the rate at which the

electromagnetic pulse loses energy. If we look at the right-
hand side, the first term is the rate of change of the particle
energy density, with the part which comes from the high
frequency oscillation in the electromagnetic wave subtracted
off. This particle contribution to the wave energy has already
been included on the left-hand side, as can be seen from~7!.
The second term is the divergence of the energy flux in the
particles, as becomes clearer if it is written as“"(ngv).
There is no wave contribution to the energy flux in a cold
plasma. Finally we have a contribution which is the rate of
change of the energy density associated with the slowly
varying electric and magnetic fields produced by the plasma.
So, we end up with a completely consistent description of the
transfer of energy from the electromagnetic pulse to the elec-
trons, valid for arbitrary electron density and momentum.
The evolution of the laser pulse is described by the ray-
tracing equations, supplemented by the condition that the
integral of va2 over any three-dimensional volume carried
along with the rays is constant, while the rate of transfer of
energy from the wave to the electrons is determined by the
value of va2 (dv/dt) along the ray path. To determine the
pulse evolution each point of the envelope should be fol-
lowed in position and wavenumber space~the frequency
does not need to be followed separately but can be obtained
from the dispersion relation!. In this way the change in shape
due to differences in group velocity and in photon decelera-
tion in different parts of the pulse can be followed. As
pointed out by Sprangleet al.,11 wavenumber dispersion may
also be important. This can be taken into account within the
present geometrical optics formulation by regarding the
pulse as a superposition of different wavenumber compo-
nents. This procedure, described by Mendonc¸a,5 is valid as
long as the time scale associated with the pulse is long com-
pared with that associated with the optical frequency oscilla-
tions. Each wavenumber component will propagate accord-
ing to the above description and the energy transfer just be a
superposition of the effects of these components. The spec-
trum of wavenumber components is determined by the Fou-
rier transform of the initial pulse shape. If, as is common,
this is taken to be a Gaussian then the wavenumber spectrum
is also Gaussian with a width inversely proportional to the
spatial extent of the pulse. This applies, of course, to both the
longitudinal and transverse components of the spectrum. Fi-
nally we should say that as the system evolves it is possible
that steep gradients or local focusing or formation of caustics
by the rays may invalidate the geometrical optics approxima-
tion.

III. APPLICATION TO THE WAKEFIELD PROBLEM

Now we relate this to the one-dimensional quasistatic
wake equations, to demonstrate its consistency with familiar
results. In this case all the plasma properties are assumed to
be a function ofz2t ~in suitably scaled units! so

]

]t
→2

]

]z
,

and the general result becomes
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with E an appropriately normalized longitudinal electric
field. Now, according to, for example, Sprangle, Esary and
Ting,1 the various plasma quantities are related to the poten-
tial in this approximation through
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, ~18!
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wherevp0
2 is calculated from the unperturbed plasma density

andn is normalized to this density. From this we can obtain,
since
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the relations
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Using these, the conservation relation becomes
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Rearranging and cancelling out a factor]f/]z gives a result
equivalent to Poisson’s equation in the quasistatic case. Our
conservation relation is thus entirely consistent with the
well-known quasistatic wakefield equations.

It is interesting to discuss the application of this ap-
proach to some recent work by Sprangleet al.11 These au-
thors obtain a higher order envelope equation and discuss the
evolution of the electromagnetic pulse shape. Higher order
terms are needed to include the frequency evolution, since
their eikonal is calculated with a constant frequency. In our
approach, the variation in frequency, wavenumber and group
velocity is calculated across the pulse profile by use of the
ray-tracing equations, while the amplitude variation can be
found from ~10!. If we consider a simple one-dimensional
approximation where the plasma density can be assumed to
be a function ofz2ct, then
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52
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vp

2,
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]z
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2 .

At the leading edge of the pulse~assumed to be moving in
the positive direction!, the gradient ofvp

2 is positive, as the
pulse produces an initial density cavity, and so the frequency,
wavenumber and group velocity all decrease. The peak of the
pulse moves backwards while, from~10! its amplitude~at
least expressed in terms of the vector potential! increases.
This is qualitatively in agreement with the results of
Sprangleet al.11 It is also qualitatively consistent with some
recent results obtained by Reitsma,12 also using a higher or-
der envelope equation.

IV. DISCUSSION AND FURTHER COMMENTS ON
ELECTRON ACCELERATION

To emphasize once more the difference between our ap-
proach and others which use a higher order envelope equa-
tion, the latter use a known frequency and wavenumber in
the eikonal. In our case we determine the local wavenumber
and frequency at each point using the ray-tracing equations
in standard form. The wave amplitude can then be deter-
mined from a first order equation which, written in different
ways, can be interpreted as a conservation equation for wave
action~or density of wave quanta! or as an energy equation.
In the energy equation the energy gained or lost by the elec-
tromagnetic pulse has been shown to be exactly balanced by
the change in energy of the plasma particles and the slow
part of the electromagnetic field. As far as we are aware this
is the first time that the energy transfer between the laser
pulse and wake has been considered in such detail and in a
general setting in which a quasistatic wake is not assumed.

Considering the wakefield problem again, if the plasma
can be regarded as having a stationary profile which is a
function ofz2vt, with v;c, then the rate of energy loss to
the wake is 2(1/2)(a2c)(]/]z) vp

2 , integrated over the
pulse profile. Even if an electron bunch can be optimally
placed to extract all the energy from the wave, this places an
upper bound on the rate at which it can gain energy. Suppose
that instead we placed the electromagnetic pulse on the trail-
ing edge of a relativistic electron bunch, adjusting the den-
sity and frequency so that the pulse and the bunch traveled
together. On the trailing edge, the density gradient would be
such as to produce wave energy absorption by the electrons,
and if the density and scale length of the bunch were com-
parable to the density used in the wakefield scheme and the
wakefield wavelength, then there would be a comparable rate
of energy absorption, guaranteed to go entirely to the rela-
tivistic electron bunch.

We can see in more detail what would happen if we
consider first a one-dimensional problem, taking an electron
bunch moving rigidly with speedV and changing to the rest
frame of this bunch. In this frame the point where the laser
pulse is slowed to the beam velocity in the laboratory frame
corresponds to the critical density at which the pulse, Dop-
pler shifted to a lower frequency, is reflected with unchanged
frequency. Transforming back to the laboratory frame, this
corresponds to the laser pulse overtaking the electrons, mov-
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ing up the density gradient until its speed becomes equal to
that of the electrons, then coming back down the density
gradient and eventually being reflected. The ratio of incident
to final frequency in this frame is

c2V

c1V
,

a small number ifV;c. In this situation we would expect
almost complete transfer of energy from the laser to the elec-
trons. Note that the electron density needed in the laboratory
frame is that which slows the group velocity to the electron
bunch velocity, not the critical density in this frame which
would be much higher.

In practice important questions would arise as to whether
the electron bunch could be focused and compressed in three
dimensions. To answer such questions in detail will need a
detailed study of the dynamics of the electron bunch, but if
we consider the qualitative nature of the ray paths, then we
expect something like the behavior sketched in Fig. 1. Rays
hitting the edges of the bunch are refracted outwards, so
there will be an inwards force tending to produce axial
bunching. We might imagine that with a suitably tailored
laser pulse it would be possible to compress and focus the
electron bunch in a smooth way, the problem being rather
akin to the old one of producing smooth compression of an
imploding shell.

V. CONCLUSIONS

We have shown that a consistent treatment of laser pulse
propagation in an underdense plasma can be obtained from

standard ray tracing techniques, supplemented by a condition
which expresses conservation of wave action along the ray
path and which fixes the amplitude variation. An equation for
energy transfer from the pulse to the plasma is obtained and
it is shown to be consistent with a detailed consideration of
the electron dynamics. Applying this to the wakefield, the
conclusion is that the rate at which energy is transferred from
the pulse to the wake, which of course puts an upper bound
on the rate at which energy can be transferred to an acceler-
ated electron bunch, depends on the plasma gradient pro-
duced by the pulse. To extract energy efficiently from the
wake needs an electron bunch of a length comparable to or
shorter than the wavelength of the wake, and of a density
comparable to that of the background plasma. Smaller num-
bers of electrons can, of course be accelerated, but this
makes very inefficient use of the laser energy. If a suffi-
ciently short and dense electron bunch can be produced in a
vacuum and a laser pulse launched just behind it, then the
laser pulse will be confined to the trailing edge of the bunch
where it will give up energy at a rate comparable to the
maximum rate at which energy can be transferred in the
wakefield scheme. While further work needs to be done on
the details of the electron dynamics, it seems possible that
this scheme could be used to produce acceleration and focus-
ing of an electron bunch in a simpler way than the wakefield.
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FIG. 1. Schematic of ray paths for the wave overtaking a plasma bunch. The
outwards refraction will produce a focusing effect on the bunch.
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