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Abstract. The results of photon kinetic simulations of the propagation of a short laser pulse in 
plasma are compared with simulation results for the same pulse from a slowly varying envelope 
code. The envelope method retains more information about the phase of the electromagnetic 
field, which makes it more complete than the photon kinetic approach. However, the envelope 
code requires a much smaller grid size and time step for accurate simulation of pump depletion.  

INTRODUCTION 

The stable propagation of a short laser pulse in underdense plasma over distances 
much longer than the Rayleigh length is a prerequisite for plasma-based accelerators 
[1], x-ray lasers [2] and harmonic generation [3]. In the laser wakefield accelerator 
(LWFA), the laser pulse duration is half a plasma wavelength or shorter, so that the 
pulse leaves behind a ponderomotively driven plasma wave (wakefield) in which co-
propagating relativistic electrons can be accelerated [4]. The natural timescale for this 
acceleration is given by the phase slippage of electrons in the plasma wave [5], which 
occurs as a result of the difference between the electron's velocity (basically equal to 
c) and the phase velocity of the wakefield, which is equal to the laser pulse group 
velocity vg<c. Thus the energy gain is limited by the time that the electron can remain 
in the accelerating part of the wakefield, which is known as the dephasing time [4,5].  

Simulation of laser pulse evolution up to the dephasing time is very costly with 
particle-in-cell codes [6]. This is because these codes resolve individual oscillations of 
the electromagnetic field both temporally and spatially [7]. However, in underdense 
plasma one can exploit the separation of timescales [8] that occurs naturally when the 
plasma frequency ωp=(4πn0e2/m)½ is much smaller than the laser carrier frequency ω0, 
where n0 denotes the (unperturbed) plasma density. Two methods that use this 
separation of timescales are the slowly varying envelope approximation (SVEA) [9] 
and the photon kinetic approach [10]. We have written one-dimensional simulation 
codes to test and compare both methods for simulating laser pulse evolution on long 
timescales. As the physics of the laser pulse evolution has been described before 
[11,12], we focus on the computational aspects in this paper. We start with the basic 
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equations, discuss our numerical implementation, present some simulation results and 
end with conclusions. 

BASIC EQUATIONS 

The starting point of our analysis is the wave equation for the transverse vector 
potential in one-dimensional geometry  

                                               ( ) ,Ac pzztt 022 =Ω+∂−∂ ⊥

r
 (1) 

with Ωp
2(z,t)=4πne2/γm the local plasma frequency, and n(z,t) and γ(z,t) the density 

and Lorentz factor of the plasma electrons, which are described with a fluid model. 
The quantity Ωp

2 is assumed to vary slowly (i.e. on the timescale of the plasma 
oscillation), which is the case if one assumes circular polarisation. Ions are assumed 
not to move at all.  

In the SVEA, the separation of timescales is made explicit by writing the transverse 
vector potential as the product of a rapidly varying phase θ=ω0(z/c-t) and a slowly 
varying dimensionless envelope a 
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where êp=(1,i) for circular polarisation. Changing variables to t and ζ=z/c-t, one finds 
the following envelope equation 
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where a ∂
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2a/∂t2-term has been neglected. This envelope equation satisfies the 

conservation of wave action [11] 
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In the photon kinetic approach [10], the laser pulse is represented by a distribution 
fp(ζ,k) of quasi-photons with canonical space (ζ) and wave number (k) variables, such 
that the evolution of fp along the ζ-axis corresponds to the slow envelope dynamics, 
while the evolution along the k-axis represents the dynamics on the fast timescale of 
the carrier frequency. The quasi-photon equations of motion are the ray-tracing 
equations, which are derived from the Hamiltonian H=ω-ck, where ω denotes the 
photon frequency, which is given by a local dispersion relation 

                                                                                          (5) 
The photon distribution function obeys a Vlasov equation 
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which can be derived from Equation (2) in the limit of geometric optics, neglecting 
higher-order diffraction effects [13]. Formally, the photon kinetic and envelope 
methods are connected through a Wigner transform  

               ( ) ( ) ( ) ( ) ( ) ( ) ,d]exp[222 0
1
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where k0=ω0/c. 
The plasma response is described by the quasi-static fluid equation [14] for the 

dimensionless electrostatic potential ψ=eφ/mc2 
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and the system of equations is closed by expressing the local plasma frequency Ωp

2= 
ωp

2/(1+ψ) in terms of the potential, and |a|2 as  
                                          |a|                   (9) 

for the photon kinetic description. The laser pulse energy is given by 
k k/kf p∫= d),(),(2 ζωζ

                        U   (10) 
where the first formula applies to the SVEA and the second to the photon kinetic 
description. In both cases energy conservation is found from 
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where ∆uw denotes the difference in the wake energy density  
                                  )]1()1()[( 222

2
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before and after the laser pulse. As Eq. (8) shows, uw is constant on either side of the 
laser pulse where |a|2=0.  

NUMERICAL IMPLEMENTATION 

At each timestep t → t+∆t, Eq. (8) is solved with a finite-difference method for ψ 
on a grid with spacing ∆ζ, using |a|2 as input and giving Ωp

2 as output. This result is 
then used to update |a|2, either with the photon kinetic or with the envelope model. For 
the envelope model, a is given on the same grid as ψ and updated with the Crank-
Nicholson method [15] 

          [               (13) 
which is almost second order accurate due to the error in taking the available Ω
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the left hand side instead of the unknown Ωp
2(t+∆t). We expect that this is a relatively 

small error, as Ωp
2 is assumed to evolve much slower than a. On the grid, Eq. (13) 

transforms into a tridiagonal system of linear equations, which is straightforward to 
solve [15]. The conservation of wave action given in Eq. (4) is reproduced exactly in 
this finite-difference scheme.  

For the implementation of the photon kinetic approach, the photon distribution 
function fp is represented by a number of finite-size macro-particles, which makes our 
implementation a 'photon-in-cell' code. The macro-particle dynamics are described by 
the ray-tracing equations, which are solved with a 4th order Runge-Kutta integration 
[15]. Our implementation is not strictly 4th order, because for Ωp

2 the available value at 
the beginpoint t is used for computing the derivatives at the midpoint t+∆t/2 and the 
endpoint t+∆t. As with the envelope model, we don't expect this to lead to large 
errors. During the integration, it is necessary to interpolate Ωp

2 from the grid to the 
macro-particle's position ζi. Likewise, for calculating |a|2 with Eq. (9), it is necessary 
to project from the macro-particle's position to the grid with weight 1/ω(ζi,ki). For both 
operations, the second order version of the standard particle-in-cell spline method [6] 
is used. A four-pass digital filter is used to smooth the particle noise in |a|2. 
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SIMULATION RESULTS 

The initial conditions for a and fp correspond to a bandwidth-limited Gaussian laser 
pulse, given by 

        (14) 
with a
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0=1, ω0/ωp=40, k0L=40√2, corresponding to a laser pulse with 40 fs full-width-
at-half-maximum (FWHM) duration and 4x1018 Wcm-2 peak intensity, propagating in 
a plasma with density 1.1x1018 cm-2. The grid size ∆ζ and the time step ∆t have been 
varied as given in Table 1. 

 
TABLE 1.  Values of grid size, time step and run time for different runs. 
run no. grid size ω0∆ζ time step ω0∆t run time (s) for SVEA / Photon Kin 
1 0.25 2000 2 / 8  
2 0.25 400 8 / 40 
3 0.25 80 35 / 195 
4 1 80 8 / 48 
5 4 80 2 / 12 
6 4 2000 <1 / <1 

 
The consistency and convergence of both the envelope and photon kinetic codes 

have been checked by calculating the laser pulse energy in two different ways: method 
A is a direct computation of Eq. (10) and method B is an evaluation of ∆uw with Eq. 
(12), followed by an integration of Eq. (11). First we discuss the results for the 
envelope code, which are shown in Figure 1. In this Figure, time is normalized with 
the dephasing time td, which is equal to the duration of (ω0/ωp)3=64000 optical cycles. 
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FIGURE 1.  Evolution of pulse energy in the SVEA simulations: high-resolution runs 2, 3 give the 
same result from both energy calculation methods (A,B). Deviations occur if ∆t is too large (run 1), or if 
∆ζ is too large (runs 4 and 5). In these cases, methods A and B are seen to give different results.  

 
The high-resolution runs 2 and 3 give identical results with both energy calculation 

methods. Deviations from this result occur for run 1, which has a larger ∆t, and for 
runs 4, 5 and 6 (6 not shown here), which have a larger ∆ζ. In Figure 1, method A is 
seen to yield in run 5 the unphysical result that the laser pulse energy increases as it 
propagates through the plasma. The conditions for sufficiently small ∆t and ∆ζ  follow 
from the local changes in the phase and the wavenumber of the laser pulse, induced by 
the plasma. As a result of energy loss to the wakefield, the wavenumber decreases 
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during the propagation of the pulse inside the plasma [12], which requires a smaller 
∆ζ: in order to reproduce a feature with wavenumber k0-δk in the laser pulse, one 
needs to resolve δk ~ 1/ ∆ζ  in the envelope. This is illustrated in Fig. 2, which shows a 
snapshot of Re a and |a|2 at t/td=0.55 for runs 3 and 4. In the snapshot of Re a the 
short-wavelength features are seen to be resolved much better for the run with  smaller 
∆ζ, especially in the tail of the pulse. The effect on the envelope is shown in the 
snapshot of |a|2.  

 

ω0ζ

Re a |a|2

 
FIGURE 2.  Snapshot at t/td=0.55 from the SVEA simulations: run 3 (small circles) compared to run 4 
(diamonds). Run 3 features a smaller ∆ζ and resolves the short-wavelength features better.  

 
The photon kinetic simulation results are not so sensitive to the values of ∆ζ and ∆t: 

the evolution of pulse energy is the same for runs 1-6, irrespective of the method of 
calculation and close to the result of the high-resolution SVEA runs, as shown in Fig. 
3. This Figure also shows snapshots at t/td=0.55 of the photon kinetic simulation with 
the lowest resolution, together with the same snapshot from the SVEA run with the 
highest resolution. Although the photon kinetic simulation obviously cannot resolve 
the short-wavelength features, the agreement between the runs shown in Fig. 3 is 
comparable to the agreement between the runs of Fig. 2.  
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FIGURE 3.  Comparison between SVEA and photon kinetic simulations. Left: pulse energy evolution. 
Right: snapshot of I at t/td=0.55 from SVEA run 3 (small circles) and photon kinetic run 6 (diamonds).  
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CONCLUSIONS 

In this paper we have compared the slowly varying envelope approximation and the 
photon kinetic method for one-dimensional simulation of laser pulse propagation in 
underdense plasma. In Table 1, the envelope code is seen to be faster in comparison 
with a photon kinetic run with the same resolution (∆ζ,∆t). This is because the number 
of macro-particles needs to be relatively large for small ∆ζ to suppress the noise, 
which is computationally expensive due to the 4th order Runge-Kutta integrator for the 
photon dynamics. However, the photon kinetic code does not require ∆ζ, ∆t to be 
nearly as small as the envelope code to reproduce the pump depletion physics 
correctly, as Figure 3 clearly shows. This makes the photon kinetic method an 
attractive alternative for simulating laser propagation over long distances, at least as 
long as detailed information about the phase of the electromagnetic field is not 
important.  
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