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This paper discusses photon kinetic theory, which is a description of the electromagnetic field in
terms of classical particles in coordinate and wave number phase space. Photon kinetic theory is
applied to the interaction of laser pulses with underdense plasma and the transfer of energy and
momentum between the laser pulse and the plasma is described in photon kinetic terms. A
comparison is made between a one-dimensional full wave and a photon kinetic code for the same
laser and plasma parameters. This shows that the photon kinetic simulations accurately reproduce
the pulse envelope evolution for photon frequencies down to the plasma frequency.
© 2006 American Institute of Physics. �DOI: 10.1063/1.2366577�

I. INTRODUCTION

Due to recent technological advances, it is now possible
to induce relativistic particle motion in the electromagnetic
fields of a short pulse, high intensity laser. The light pressure
of ultrashort laser pulses induces charge separation in a
plasma and excites electric fields that are three to four orders
of magnitude stronger1 than those of conventional particle
accelerators. This makes the interaction of intense laser
pulses with plasma attractive for particle acceleration,2

nuclear reactions,3 and short wavelength radiation sources.4

The evolution of a laser pulse as it interacts with a relativistic
plasma is a complex process, as the plasma is a dielectric
medium with a strongly nonlinear response to the laser
fields, which induces feedback to the laser pulse due to spa-
tial and temporal permittivity variations.5 Understanding
how to harness the plasma is fundamental to developing new
technology from the laser-plasma interaction.

In this paper we discuss photon kinetic theory, a rela-
tively novel method of describing the propagation of short
laser pulses in underdense plasma. Photon kinetic theory is
an example of a wave kinetic theory,6 which elegantly de-
scribes the coupling of waves with very different time scales
by representing the “fast” component of the wave by quasi-
particles in the position-wave number phase space. The
phase space representation is a natural way of dividing the
time scales, as the evolution of the wave number coordinates
corresponds to the spectral changes of the fast wave and the

spatial evolution corresponds to the envelope changes, which
are assumed to be “slow” and lead to coupling between the
fast and slow waves. In the case of a laser pulse propagation
in underdense plasma, the fast wave corresponds to the laser
light pulse with a carrier frequency �0 and the slow wave is
the plasma wave with plasma frequency �p��0.

We formally convert the time amplitude representation
of the electromagnetic field to position-wave number phase
space of quasiparticles by a Wigner transform. The first
physical applications of this transform are found in quantum
mechanics studies in the 1930s.7,8 However, the transform is
well suited to describe classical wave-wave interactions. The
development of photon kinetic formalism has been outlined
in Ref. 9 and also in Ref. 10. Because the spectral and spatial
content is separated in wave kinetic theories, they are inher-
ently suitable for describing ultrashort pulse phenomena and
broadband turbulence. For a laser pulse propagating in un-
derdense plasma, the advantage of the photon kinetic de-
scription over the usual particle-in-cell method11 is that a full
resolution of the optical frequency and wavelength are not
required. This leads to much faster and more efficient nu-
merical codes, which allow larger propagation distances to
be simulated and large parameter studies to be undertaken.
Furthermore, the phase space representation inherent in the
photon kinetic codes give additional insights into the evolu-
tion of the fields, as will be demonstrated in the simulation
results presented in this paper. The price to pay for the en-
hanced efficiency is the loss of the phase of the electromag-
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netic field in the photon kinetic description, which has the
consequence of excluding a class of phase-dependent phe-
nomena such as Raman backscattering.12 However, other
well known nonlinear laser-plasma instabilities, such as
self-modulation,13 self-focusing,14 and filamentation,15 are
well described.

In this paper, we illustrate the power of the photon-
kinetic approach to modeling laser-plasma interactions by
comparing the predictions of a one-dimensional photon ki-
netic code with that of a full wave code. In both cases the
laser-plasma interaction is described fully self-consistently
using a relativistic cold fluid model to describe the plasma.
To investigate two different important laser-plasma interac-
tion regimes widely studied for electron acceleration,16 we
consider the case of an initial Gaussian laser pulse with a
length much longer than the plasma wavelength, and com-
pare this with the case of laser pulse duration equal to half a
plasma wavelength. The short pulse resonantly excites a
trailing plasma wave or wakefield, while the long pulse evo-
lution is subject to the self-modulation instability. When the
long pulse starts interacting with the plasma, it initially does
not excite a trailing plasma wave. However, the self-
modulation instability grows slowly and eventually excites
large amplitude wakefields to the point where the plasma
wave breaks, which results in trapping from the background
plasma and subsequent acceleration of electrons. This pro-
cess is known as self-modulated laser wakefield acceleration.
In contrast, the evolution of the short pulse immediately
drives a wakefield, and is thus useful for trapping externally
injected electrons, which has the potential of controlling the
acceleration process. This process is known as resonant laser
wakefield acceleration. In this scenario, electron trapping
from the background plasma is regarded as a source of dark
current, i.e., an unwanted stream of particles with properties
that cannot be controlled. Electron trapping from the back-
ground plasma and acceleration are excluded from our simu-
lations due to the use of a fluid model for the plasma re-
sponse. However, the purpose of our paper is to compare the
photon kinetic model with the full wave model of laser pulse
evolution. Electron trapping can be studied separately using
a more complete model for the plasma response.

The paper is organized as follows: in Sec. II, the full
wave equation is used to derive conservation laws that de-
scribe the conservation of wave action and the energy and
momentum transfer between the laser and the plasma. In Sec.
III we briefly describe the fluid model that we use for the
plasma dynamics. In Sec. IV, we present a derivation of the
photon kinetic equations and we show how the conservation
laws outlined in Sec. II are reproduced. In Sec. V, the full
wave and photon kinetic codes are described and simulation
results are presented. Finally, Sec. VI is devoted to discus-
sion and conclusions.

II. FULL WAVE THEORY

The starting point of our analysis is the following one-
dimensional wave equation:17

� �2

�t2 −
�2

�z2 + �p
2�z,t��A�z,t� = 0. �1�

In this equation, A is a complex representation of the trans-
verse vector potential that describes a circularly polarized
laser pulse that propagates in a plasma. The quantity �p is a
generalized space and time-varying plasma frequency, which
takes into account local ponderomotive and relativistic ef-
fects, as will be explained in Sec. III. For now, it is important
to remark that �p

2 is a real-valued quantity. Throughout this
paper, we use a notation based on the convention �=me=c
=1, which explains why time and space are of the same
dimensionality in Eq. �1�.

From Eq. �1� it is not difficult to derive conservation
laws for wave action, energy, and momentum. The conserva-
tion of the wave action,
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here written in the form of a continuity equation, follows
directly from the property that �p

2 is real-valued �the asterisk
indicates a complex conjugate�. As will become apparent in
Sec. IV, a natural interpretation for the first quantity in square
brackets is photon number density, and likewise the second
quantity is interpreted as photon flux. Thus Eq. �2� estab-
lishes the important result that the number of photons is con-
served for laser-plasma interaction as long as �p

2 is real-
valued.
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while momentum conservation is expressed as
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The terms in the square brackets in these two equations de-
note the density and flux of energy and momentum carried
by the electromagnetic field, with additional contributions
from the �p

2AA* term. There are good reasons for including
these contributions on the l.h.s. of the equations, as will be-
come apparent in Sec. IV. Strictly speaking, Eqs. �3� and �4�
are not conservation laws, as the r.h.s. is not generally equal
to 0. As will be shown in Sec. III, the r.h.s. will reduce to 0
when we add the energy and momentum balance of the
plasma to the model. Equations �3� and �4� demonstrate that
the condition for energy and momentum exchange between
the laser pulse and the plasma is that �p

2 varies, respectively,
temporally and spatially.
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III. FLUID MODEL

From Sec. II it is apparent that a self-consistent descrip-
tion of laser-plasma interaction requires a model for the
plasma response. In this section, we briefly describe the
widely used relativistic cold fluid model in the quasistatic
approximation.18 The plasma ions are treated as an immobile
neutralizing background with density n0, which we use
to define the ambient plasma frequency �p according to
�p

2 =4�n0e2 /me �in CGS units�. The continuity equation for
the plasma electron density n�z , t� is

�n

�t
+

��nvz�
�z

= 0, �5�

where vz= pz /� is the velocity, pz�z , t� is the longitudinal mo-
mentum, and ��z , t� is the Lorentz factor, which contains a
contribution from the quiver motion in the laser field

�2 = 1 + pz
2 + AA*, �6�

as follows from identifying the perpendicular momentum p�

with the vector potential A�. The �p
2AA* term in Eqs. �3�

and �4� can now be identified as the energy associated with
the quiver motion.

The equation for the longitudinal momentum is

�pz

�t
=

��

�z
−

��

�z
, �7�

where � denotes the electrostatic potential. The second term
on the r.h.s. of Eq. �7� represents the ponderomotive force,
while the first term is the electrostatic field associated with
plasma waves. The fluid model is completed with Poisson’s
equation

�2�

�z2 = n − n0. �8�

In terms of this fluid model, the generalized plasma fre-
quency is expressed as

�p
2 =

�p
2n

�n0
, �9�

so that energy and momentum exchange between laser pulse
and plasma are seen to arise from relativistic effects �modu-
lations in � due to quiver motion� or density fluctuations
�modulations in n due to plasma waves�.

From Eqs. �5�–�8� it is straightforward to deduce the
plasma energy balance19
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and momentum balance
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The �p
2AA* term has been included in the l.h.s. of the equa-

tions to explicitly show the energy and momentum conser-
vation, as the r.h.s. now exactly balances to 0 after adding
Eqs. �3� and �4�.

A useful reduction of the fluid model is the quasistatic
approximation, which consists of replacing the full �z , t�
dependence of all plasma quantities with a dependence on
�=z− t only. This means that each element of the plasma
electron fluid responds in the same way to the laser pulse as
it passes by. This approximation is only valid if changes to
the pulse envelope AA* can be neglected during the time it
takes the laser pulse to propagate a distance equal to its own
length, i.e. if the envelope evolves slowly in the co-moving
frame. This property is consistent with the separation of time
scales on which photon kinetic theory is built. The quasi-
static approximation leads to the relation �− pz=1+�, which
enables all plasma quantities to be expressed in terms of AA*

and �, for example,

� =
1

2
�1 + � +

1 + AA*

1 + �
�, �p

2 =
�p

2

1 + �
. �12�

Due to the identification � /��=� /�z=−� /�t, Eqs. �10� and
�11� reduce to a single expression

�

��
�1

2
� ��

��
�2

+
1

2
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2�2� = −
1

2

��p
2

��
AA*, �13�

which follows from the quasistatic equation

�2�

��2 =
�p

2

2
� 1 + AA*

�1 + ��2 − 1� . �14�

Notice that the kinetic and potential energy of the plasma,
which is the quantity in the square brackets on the l.h.s. of
Eq. �13�, has a natural interpretation as the Hamiltonian of an
anharmonic oscillator with coordinate �, velocity �� /��, fre-
quency �p.20 The oscillation is of course simply a plasma
wave, driven by the laser pulse ponderomotive force. The
anharmonicity is due to the dependence of the frequency �p

on the coordinate �. Equation �13� shows that the Hamil-
tonian is constant in regions where AA*=0, i.e., both behind
and in front of the laser pulse. As we would expect, the
difference in the value of the Hamiltonian on both sides of
the laser pulse is equal to the rate of energy transfer between
the laser pulse and the plasma.

IV. PHOTON KINETIC THEORY

In this section, we present a derivation of the photon
Vlasov equation, which closely follows Ref. 9. Subsequently,
we briefly discuss the absence of phase information in pho-
ton kinetic theory and reconstruct the conservation laws
given in Sec. II. We start our derivation by defining the fol-
lowing Wigner transform:
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A�z,t,k,�� =	 dsd	 exp�i�	 − iks�


A�z + s/2,t + 	/2�A*�z − s/2,t − 	/2� . �15�

The dependence on �z , t� is assumed to describe the slow
evolution of the amplitude of the laser pulse, while the �k ,��
dependence describes the fast high frequency spectral con-
tent of the pulse. The dependence on both � and t allows
easy representation of correlations between temporal and
spectral pulse features �i.e., frequency chirp�. From the wave
equation �1�, it can be deduced that A obeys

�
�A
�t

+ k
�A
�z

= �p
2 sin �A , �16�

where � operates to the left and the right on two different
functions

P�Q =
�P

�z

�Q

�k
−

�P

�t

�Q

��
, �17�

the sine of the operator is to be understood as a Taylor ex-
pansion

sin � = 

n=0

�
1

�2n + 1�!
�2n+1, �18�

and powers of � are defined with binomial coefficients

P�nQ = 

m=0

n �m

n
��− �m �nP

�zn−m�tm

�nQ

�kn−m��m . �19�

These definitions follow naturally from the Taylor expansion
of �p

2�z±s /2 , t±	 /2� around s=0, 	=0. The information
contained in A includes for example the envelope of the
laser pulse

AA*�z,t� =	 	 A�z,t,k,��dkd� �20�

and the envelope of the double Fourier transform Â

ÂÂ*�k,�� =	 	 A�z,t,k,��dzdt . �21�

Integration of Eq. �16� yields the following conservation law:

�

�t
	 	 �Adkd� +

�

�z
	 	 kAdkd� = 0, �22�

which is equivalent to the conservation of wave action. Thus
�A can be interpreted as a photon phase space density fp in
an extended phase space �k ,z ,��. However, note that
Eq. �16� is not a proper Vlasov equation for fp, because
Liouville’s theorem does not apply here. For example, Eq.
�16� would allow regions of negative phase-space density to
develop from initial conditions with strictly positive values
of fp.

To arrive at a proper Vlasov equation for quasiparticles
from Eq. �16�, two approximations are needed, which have
far-reaching consequences. The first approximation is to drop
all higher-order terms in �, which amounts to neglecting all
interference and higher order dispersion effects. This effec-

tively turns the wave theory into a particle theory, as we can
now define the characteristics along which �A is trans-
ported, i.e. the equations of motion for the quasiparticles

dz

dt
=

k

�
,

dk

dt
= −

1

2�

��p
2

�z
,

d�

dt
=

1

2�

��p
2

�t
. �23�

These equations are easily recognized as ray-tracing equa-
tions.

The second approximation is that of geometrical optics
and involves the introduction of a local dispersion relation,
i.e., an expression of � as a prescribed function ��k ,z , t�.
The appropriate relation for photons in a plasma is

�2 = k2 + �p
2�z,t� , �24�

which is similar to the relation between energy and momen-
tum for a relativistic particle. This naturally leads to the iden-
tification of frequency � with the energy and wave number k
with the momentum of a single photon, just as in quantum
mechanics. In addition, photons in a plasma are seen to have
an effective mass mp, given by mpc2=��p �in dimensional
units�. Thus the “photons” in photon kinetic theory are
“dressed”21 in the sense that they contain a mixture of elec-
tromagnetic and plasma degrees of freedom. The identifica-
tion of � with energy also explains the use of the terms
“photon acceleration”22 and “photon deceleration” for de-
scribing the adiabatic blueshift or redshift due to slow tem-
poral variations of the medium. The frequency � plays the
role of the Hamiltonian with canonical coordinates �k ,z�.
The Hamiltonian equations are identical to �23�, with � re-
placed by �, e.g., the photon velocity k /� is equal to the
group velocity �� /�k. Finally, a proper Vlasov equation for
the photon density fp�k ,z , t� is found

�fp

�t
+

�fp

�z

��

�k
−

�fp

�k

��

�z
=

�fp

�t
+ �fp,�� = 0. �25�

The evolution of fp according to this Vlasov equation
excludes a correct treatment of interference effects. A simple
example might be helpful to illustrate this point. Consider a
monochromatic standing wave in vacuum, described by
A�z , t�=A0 exp�i�0�t−z��+A0 exp�i�0�t+z��. The Wigner
transform is given by

A�z,t,k,�� = A0
2
�� − �0�


�
�k − �0� + 
�k + �0�

+ 2 cos�2�0z�
�k�� , �26�

which can be interpreted as a photon distribution consisting
of three separate groups, two describing the left and right-
propagating waves and one describing their standing wave
interference pattern. The “propagating photons” obey the
vacuum dispersion relation �=k, while the “standing pho-
tons” do not ��=�0�0=k�. In general, interference between
two wave packets involves such a third group of photons,
which one might call a cloud of “virtual photons” that only
exists where and when the two wave packets overlap in
space and time. If the wave packets happen to overlap at
t=0, it is straightforward to include the third group of pho-
tons in the initial distribution �note that this may involve
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regions of negative phase-space density�. However, the evo-
lution of this third photon group will not, in general, be
correctly reproduced with Eq. �25�, because the dispersion
relation �24� is imposed. Moreover, group velocity dispersion
effects due to photon acceleration and deceleration can cause
different parts of a single wave packet, which were not over-
lapping at t=0, to overlap at some t�0 with different wave
numbers. This would also give rise to interference, and can-
not be reproduced if one starts with the single wave packet
and evolves it according to �25�. A proper description of this
effect would require dropping the first approximation
�sin ���� as well, because regions of negative phase-space
density might have to evolve from initial conditions with
strictly positive values of fp. The exclusion of interference in
photon kinetic theory is in line with the absence of phase
information: only envelope quantities like AA* can be recon-
structed from the photon density fp.

The conservation of wave action, or conservation of
photon number,

�

�t
	 fpdk +

�

�z
	 kfp

�
dk = 0, �27�

is integral to the photon kinetic theory. The conservation of
photon number implies that a pulse that loses energy in a
plasma will experience redshift, as individual photons can
lose energy only by photon deceleration. The situation is
different for a laser pulse that propagates in a gas and
�partly� ionizes the medium. It is experimentally well estab-
lished that the pulses lose energy to an ionization front, while
at the same time experiencing frequency blueshift. Clearly, in
this case the number of photons is not conserved.

From the identification of � with energy, k with momen-
tum and k /� with velocity, it is straightforward to derive
expressions for the conservation of energy:

�

�t
	 �fpdk +

�

�z
	 kfpdk =

1

2

��p
2

�t
	 fp

�
dk , �28�

and the conservation of momentum:

�

�t
	 kfpdk +

�

�z
	 k2fp

�
dk = −

1

2

��p
2

�z
	 fp

�
dk . �29�

The photon energy density and momentum flux are seen to
contain the previously mentioned �p

2AA* contributions,
which are associated with the energy of plasma quiver mo-
tion. This reflects the dressed character of the photons, i.e.,
the fact that they contain both electromagnetic and plasma
degrees of freedom, and explains why it is natural to include
these terms on the l.h.s. of Eqs. �3�, �4�, �10�, and �11�. In-
cluding the electron quiver energy in the photon description
effectively separates the fast and slow time scales, as the
photon energy density only contains contributions from the
fast time scale �fp or A�, while the plasma energy density in
Eq. �13� can be written in terms of the slow plasma quanti-
ties �� ,�� /��� exclusively. The two are coupled through the
slowly varying envelope AA* and the slow space and time
variations of �p

2.

V. SIMULATION RESULTS

In this section, we briefly sketch the full wave and pho-
ton kinetic algorithms and present simulation results. To
model the slow plasma response, both codes solve Eq. �14�
on a numerical grid with a second order finite-difference
method. The full wave code solves Eq. �1� numerically on
the same grid with a method based on the Green’s function
for the one-dimensional wave equation, treating �p

2A as a
source term �emission of transverse waves by the plasma
electrons�. The general solution to the homogeneous wave
equation consists of two arbitrary functions, both of which
propagate at the speed of light, one to the left and one to the
right. The straightforward implementation of this is to split A
in its right and left-propagating parts, which are shifted by
one grid cell at each time step �this assumes the time sam-
pling interval equal to the grid spacing in c=1 units�. The
Green’s function is equal to −1/2 in the light cone forward
from the source point �zs , ts�, and equal to 0 elsewhere in
space and time. This solution can be rewritten as a series of
signals that emanate from zs and propagate to the left and to
the right at the speed of light, at all times t� ts. Again, the
propagation of the signals is done by cell-shifting, while a
separate variable is used to determine the weight of the sig-
nals emitted from each point on the space grid at each time
step. This weight, which is actually the time-integrated cur-
rent density at zs, is updated by adding new contributions at
each time step: there is no need to keep the time history of
the system. This implementation of the wave equation is just
as efficient as the usual finite-difference time domain inte-
gration.

The numerical solution to the photon Vlasov equation
�25� is implemented using the particle-in-cell approach,11

which in this case can be called a “photon-in-cell” method.
Simulation particles are pushed forward in time by a fourth
order Runge-Kutta algorithm for the equations of motion
�23�, solving only for z and k, while � is derived from the
dispersion relation �24�. Calculation of AA* on the grid and
evaluation of ��p

2 /�z at the particle location are done with
second order projection and interpolation methods. Before
calculating the potential �, filtering is applied to AA* to re-
duce the particle noise. This particle noise gives rise to a
spurious, noisy ponderomotive force which may drive local
numerical instabilities.

The initial laser field is A���=A0 exp�i�0�−�2 /L2�,
where A0=1 is the amplitude, �0=20�p is the optical fre-
quency and the pulse length L is given by �pL=16 or 2 for
the long and short pulse cases, respectively. The initial pho-
ton distribution corresponding to the laser field is approxi-
mated with the following the spatial Wigner transform
fp�� ,k�=�0�A��+s /2�A*��−s /2�exp�−iks�ds. To define a
convenient time unit for the long-term interaction, we intro-
duce �e=�p

3 /�0
2. We compare the evolution of the envelope

AA*=��fp /��dk and the Fourier spectrum ÂÂ*=��fp /��d�,

in both codes, where Â denotes the spatial Fourier transform
of A.

We first discuss the evolution of the long pulse, whose
initial conditions are represented in Fig. 1. The plasma re-
sponse, as given by �p

2, confirms our earlier statement that
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there is no wakefield initially. The dip in the �p
2 profile inside

the laser pulse is a purely relativistic effect, caused by the
quiver motion, which changes � and consequently also
�p

2 �n /�. At this stage of the simulation, we have applied
sufficient Fourier filtering to the photon kinetic AA* profile in
order to suppress spurious wakefield excitation from the par-
ticle noise, which would form a numerical seed for the self-
modulation instability.

At time �et=4, the envelope profiles from both codes
are still indistinguishable, as shown in Fig. 2. The �p

2 profile
shows that the wakefield has not yet developed at this stage,
implying no net energy exchange between the plasma and
the laser pulse has taken place. The scatter plot of the photon
phase space at �et=4 shows that energy has been transferred
locally within the pulse, as photons have been decelerated in
the front part and accelerated in the rear part. As a conse-
quence, the peak of the envelope has moved forward and the

front of the pulse has steepened, which can be understood by
recalling that AA* is proportional to 1/�. This steepening
forms the physical �rather than numerical� seed from which
the self-modulation instability will grow. In agreement with
the photon acceleration and deceleration, both codes show a
spectrum that is broader than the initial spectrum, with a
peak on either side. The difference is that the photon kinetic
code has a nearly flat region in between the peaks, where the
full wave code spectrum shows oscillatory behavior.

The third time snapshot of the long pulse evolution,
shown in Fig. 3, is taken at �et=8. The shape of the pulse
envelope and the plasma response from both codes are still
in good agreement. By now, pulse deformation has become
more pronounced and a small amplitude wakefield is excited.
The small amplitude pulse envelope oscillations visible in
the photon kinetic simulation result are due to particle noise.

FIG. 1. �Color online� Snapshot of long pulse simulation at t=0. FIG. 2. �Color online� Snapshot of long pulse simulation at �et=4.
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At this stage of the simulation, we have relaxed the Fourier
filtering to avoid oversmoothing the AA* profile. The photon
phase space plot shows the initial stage of self-modulation,
as the photon energy is being modulated at the plasma wave-

length in the rear part of the pulse. In agreement with this,
both Fourier spectra show multiple peaks, as the modulation
leads to photon bunching around certain k values. The dif-
ference between the spectra is as before, with the full wave
spectrum showing more oscillations.

The last snapshot of the long pulse evolution, which
shows the self-modulation in its full glory, is taken at �et
=12 and shown in Fig. 4. The codes now produce different
profiles for AA* and �p

2, especially at the rear of the pulse.
This can be understood from inspection of the phase space
scatter plot, which shows that photons are dramatically de-
celerated in the rear part, to the point that their frequency
starts to approach the �local� plasma frequency �p. This limit
is beyond the validity of photon kinetic theory, which is built
on a clear separation between plasma and optical time scales.
Consequently, we cannot expect full quantitative agreement
between the full wave and photon kinetic simulations. It is
interesting to note that the slowly varying amplitude approxi-
mation breaks down in the same limit �→�p.

Interesting qualitative aspects of the evolution can be
interpreted by comparing the full wave and photon kinetic
simulation results. As an example, consider the feature
around �p�=−55 in the full wave AA* profile, which shows a
short wavelength envelope modulation. Inspecting the corre-
sponding group of photons in the phase space scatter plot, we
find that part of the photon distribution has “folded,” so that
two groups of photons with very different k values can be
found at the same coordinate �. This “folding” is precisely
the type of evolution we have mentioned above, when group
velocity dispersion effects due to photon acceleration and
deceleration cause different parts of a single wave packet,
which were not overlapping at t=0, to overlap at some
t�0 with different wave numbers and thus cause interfer-
ence. In our interpretation, the short wavelength envelope
modulation found in the full wave code is the beat wave
pattern associated with this interference.

The Fourier spectra corresponding to �et=12 exhibit the
same differences that we have noted before and are shown to
illustrate that a remarkable qualitative agreement is main-
tained even when the self-modulation instability has fully
developed. From the phase space scatter plot, individual
peaks in the photon kinetic spectrum are easily linked to
particular positions within the pulse �usually corresponding
to a minimum in �p

2� where photon k bunching has taken
place.

Unlike the case of the long pulse, several authors have
discussed the short pulse evolution in photon kinetic terms
before.23,24 We give a brief summary of this discussion here,
followed by some comments specific to our simulation re-
sults. As expected for short pulses, almost all photons are
located within the first half of the first plasma wave bucket,
where they undergo photon deceleration and lose energy to
the wakefield. Consequently, a large drop in average fre-
quency occurs, as seen in the Fourier spectra in Fig. 5, which
represent the initial spectrum and snapshots at �et=3.6. The
photon deceleration is accompanied by amplitude increase of
the vector potential envelope and the formation of a large
spike at the rear part of the pulse, as is visible in the AA*

profiles. The increase and steepening of AA* is a result of

FIG. 3. �Color online� Snapshot of long pulse simulation at �et=8.
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both photon deceleration and group velocity dispersion. As
AA*� fp /�, a drop in frequency corresponds to an increase
of the vector potential amplitude, which subsequently leads
to a stronger ponderomotive force and a larger wakefield

amplitude. Consequently, the transfer of energy from laser
pulse to plasma is enhanced and the photon deceleration
speeds up. This feedback loop leads to an explosive instabil-
ity with a time dependence of the average frequency propor-
tional to �1− t / tN�1/3.25 The typical time scale tN is propor-
tional to 1/ ��eU0�, where U0 is the initial pulse energy. As
the frequency drop is nonuniform along the length of the
pulse, different parts of the pulse have different group veloci-
ties. This leads to group velocity dispersion and, ultimately,
to strong longitudinal pulse compression �photon bunching�
at the rear of the pulse, as is visible in the photon phase space
snapshot at �et=3.6.

As the laser pulse drives a wakefield during all of its

FIG. 4. �Color online� Snapshot of long pulse simulation at �et=12.

FIG. 5. �Color online� Short pulse simulation: in the envelope and spectrum
plots, the dotted lines represent the initial conditions, the solid lines show
the full wave result at �et=3.6, and the dashed lines correspond to the
photon kinetic result at �et=3.6.
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interactions with the plasma, we have not applied Fourier
filtering in the photon kinetic code to suppress spurious
wakefields: a simple digital filter was sufficient to suppress
excessive particle noise. The photon kinetic result is seen to
overestimate the steepening of the pulse, while it fails to
reproduce the short-wavelength modulation at the rear part
of the pulse. We have checked that this failure is not due to
the numerical grid being too coarse. Inspection of the scatter
plot shows a folding of the photon phase space similar to the
one discussed above, so we interpret this modulation as a
beat wave pattern.

VI. DISCUSSION

To appreciate the relation between full wave and photon
kinetic simulation results, note that the transition from full
wave to photon kinetic theory is mathematically equivalent26

to transforming the Schrödinger equation that describes the
evolution of the wave function ��z , t� of a particle in a po-
tential V�z , t�

i
��

�t
= −

�2�

�z2 + V� �30�

into a classical Vlasov equation for the phase space density f

�f

�t
+ �f ,H� = 0, �31�

where H�p ,z , t�= p2 /2+V�z , t� is the Hamiltonian. The cor-
respondence is ��*�z , t�→�f�p ,z , t�dp, etc. This transition
involves the same approximations that have been presented
in Sec. IV, where the photon Vlasov equation �25� is derived.
With this analogy in mind, it is not difficult to understand
why the photon kinetic theory does not include interference
effects. Interference is also the explanation of the differences
between the full wave and photon kinetic Fourier spectra,
which are reminiscent of the differences between ��*

profiles of eigenstates of the quantum harmonic oscillator
�V=�2z2 /2� and the projected density of corresponding clas-
sical orbits, as depicted in Fig. 6. The nth quantum eigenstate
is a standing wave pattern with n nodes, which explains the

oscillations in ��* as quantum interference. In contrast, the
projected classical phase space density is nonzero in the
whole region of the classical orbit �and singular at the turn-
ing points�. After averaging over the space scale of the os-
cillation, the quantum profiles converge to the classical result
in the limit of large quantum numbers. The agreement is lost
in the opposite limit of small quantum numbers, in line with
our observation that photon kinetic theory breaks down in
the low-frequency limit �→�p.

Although interference effects are not included in photon
kinetic theory, the photon phase space pictures are actually
very helpful in predicting where and when these effects will
occur. We have illustrated this when we discussed Fig. 4,
where we have used the photon kinetic results to interpret an
envelope modulation found in the full wave code as a beat
wave pattern. In principle, the same information can be ex-
tracted by applying the Wigner transform to the full wave
simulation results. However, in practice it can be computa-
tionally costly to calculate these Wigner transforms. More
importantly, the full wave Wigner transforms contain all
higher order dispersion effects and are more difficult to in-
terpret than the simple particle picture used in photon kinetic
theory.

A comparison between one-dimensional photon kinetic
and slowly varying envelope codes has been reported by us
in Ref. 27. It was found that the slowly varying envelope
code requires much smaller grid size and time step than the
photon kinetic code, and is therefore slower. Both codes give
identical results for the spatial envelope until they reach the
limit of validity of the underlying approximations.

Finally, we note that extension of the photon kinetic
model to multidimensional geometry is straightforward from
a numerical point of view. We are currently developing mul-
tidimensional photon kinetic codes and preliminary results
show at least qualitative agreement between simulation re-
sults based on photon kinetic and slowly varying envelope
methods.

In conclusion, we have studied laser pulse propagation
in underdense plasmas with two different one-dimensional
codes for two laser pulse lengths that are relevant to the
ongoing development of laser wakefield accelerators. The
first code is based on the full wave theory and has been used
to benchmark the second one, which is based on photon ki-
netic theory and represents the electromagnetic field as a
number of quasiparticles in coordinate-wave number phase
space. This “photon-in-cell” code is able to reproduce the
evolution of the full wave spatial envelope accurately until
the photon frequency starts to get close to the �local� plasma
frequency. This is expected, as photon kinetic theory starts to
lose its validity in this regime. The Fourier spectra from the
two codes agree qualitatively, and the differences can be un-
derstood from the fact that photon kinetic theory does not
include interference effects, as the relation between photon
kinetic theory and the full wave description is formally
equivalent to the relation between the classical and quantum
descriptions of particle dynamics �and classical particles do
not interfere�. In spite of this, the phase space pictures from
the photon kinetic code clearly indicate where and when in-
terference effects occur. This is a good example of the syn-

FIG. 6. �Color online� Quantum-mechanical probability density ��* in the
solid line and corresponding projected classical phase space density in the
dashed line, for the n=12 eigenstate of the harmonic oscillator.
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ergy between the full wave and photon kinetic approaches, as
one is more complete and the other is more intuitive.
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