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Abstract. Target normal measurements of proton energy spectra from ultra-
thin (50–200 nm) planar foil targets irradiated by 1019 W cm−2 40 fs laser pulses
exhibit broad maxima that are not present in the energy spectra from micron
thickness targets (6 µm). The proton flux in the peak is considerably greater than
the proton flux observed in the same energy range in thicker targets. Numerical
modelling of the experiment indicates that this spectral modification in thin
targets is caused by magnetic fields that grow at the rear of the target during
the laser–target interaction.
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1. Introduction

The field of laser-driven ion acceleration from solid targets has developed rapidly since the
development of chirped pulse amplification (CPA) lasers, which can now achieve intensities
up to 1022 W cm−2. Activity in this area is being driven by the possibility of developing a
radical alternative ion acceleration technology that might find application areas such as ion
beam treatment of tumours, and ion-driven fast ignition inertial confinement fusion (ICF).

Most experiments have attributed the emission of multi-MeV proton and ion beams from
solid targets irradiated at these intensities to the target normal sheath acceleration (TNSA)
mechanism [1, 2]. The radiation pressure acceleration (RPA) mechanism may become very
important in experiments that utilize intensities above 1021 W cm−2 [3]–[5]. A number of
experimental and theoretical studies have looked at a wide range of issues including energy
scaling [6, 7], beam collimation and focusing [8]–[10], beam control [11], conversion efficiency
and flux [12, 13] and control of the energy spectrum [14]–[16], especially in the context of the
TNSA mechanism.

The development of simple methods of controlling and manipulating the ion energy
spectrum has proved difficult. Those methods of generating quasi-monoenergetic spectra which
have been demonstrated experimentally, have thus far required strong target cleaning [14]–[16],
demanding target fabrication [14], or a secondary device [8, 9]. Therefore there is a strong
motivation for finding simple laser–target configurations that can produce narrow-band ion
energy spectra.

In this paper, we present the results of an experiment carried out using ultra-thin
(50–200 nm) foil targets, and high laser contrast, in which broad maxima were observed in
the proton energy spectrum between 0.5 and 1.4 MeV. These broad spectral peaks were not
observed when using thicker targets (6 µm). The energy spectra were measured by Thomson
parabola spectrometers that only sample within a very small solid angle (<2 µsr). Numerical
simulations of the experiment show that the energy spectrum of the protons emitted within an
angle less than 0.5 mrad from the target normal also contain strong peaks of the same form
and positioned very closely to the measured average. The energy spectrum of all forward
emitted protons, i.e. integrated over the full angular emission, does not however. Analysis of
the simulation results showed that this was due to strong (>1000 T) magnetic fields at the back
of the target. The magnetic field has defocusing and focusing regions that will deflect protons
out of, or move more protons into, the cone of observation. The existence of a defocusing
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B-field is a common feature in particle-in-cell (PIC) simulations; however the existence of
a proton-focusing region of the B-field is a novel feature for these experimental parameters.
This produces a broad spectral peak in the target normal spectrum. The measured signal
at the peak is much higher than it is in the thicker target spectra at the same energy—the
spectral modification also enhances the proton flux. Theoretical studies of underdense targets at
higher intensities (I ≈ 1022 W cm−2) have indicated that proton-focusing B-fields can be formed
[17, 18], although it has not been clear until now whether this could be realized or be
significant at lower intensities (I ≈ 1019 W cm−2) with planar solid foils. This is the first report
of indications that there is a new regime of magnetically influenced TNSA in which highly
non-Maxwellian spectra naturally occur.

Many experimental and theoretical studies of TNSA do not consider the effect of magnetic
fields. However, a few publications have indicated that magnetic fields can be important
[19, 20] or at least have some role [21, 22]. These papers have either considered targets that have
been so severely decompressed by the laser pre-pulse as to be nearly underdense, or targets that
are initially underdense. In these interactions, the laser pulse propagates through the plasma and
exits at the rear of the target. In the experiment reported here, the laser pulse does not propagate
through the target, so the regime studied in this paper is quite different to that considered
in [19]–[22]. Furthermore, these previous experiments did not observe the spectral modifications
that are described here. It must also be noted that these are target normal measurements—we
are not observing ‘monoenergetic rings’ as have been seen in previous experiments [23]–[25].
It is important to note that, unlike the interpretation given in [23, 24] where resistive B-field
generation inside the target is important, the magnetic fields in the interpretation of these results
are generated in a non-resistive fashion in the plasma expansion. As previously mentioned,
theoretical studies of interactions with underdense targets and curved solid foils at significantly
higher intensities (I ≈ 1022 W cm−2) than those considered here (I ≈ 1019 W cm−2) indicate that
magnetic fields, and particularly proton-focusing regions of magnetic fields, can be important.

2. Experimental set-up

The experiment used the Rutherford-Appleton Laboratory’s ASTRA laser system. ASTRA is
a Ti:sapphire laser that produces pulses with a 40 fs full-width at half-maximum (FWHM)
duration that contain up to 700 mJ of energy. A plasma mirror set-up was used to improve the
pulse contrast from 106 at 1 ns to 108. In this set-up, the beam was focused onto an anti-reflection
coated glass substrate and then re-collimated using two f/8 off-axis parabolas. The beam was
finally focused onto a target at an incidence angle of 66.5◦ using an f/3 off-axis parabola. This
produced a focal spot with an FWHM of 4–6 µm at best focus.

The energy spectrum of the protons emitted into the forward direction was measured using
an on-axis Thomson parabola spectrometer. This spectrometer detected protons by means of a
scintillator that was optically coupled to an EMCCD7. This provided ‘on-line’, instantaneous
spectra over a range of 0.2–6 MeV. The spectrometer was placed 532 mm from the target.
Protons were admitted through a rectangular pin-hole that was 561 × 668 µm. The scintillator
detector was placed an additional 271 mm behind the pin-hole. The spectrometer had an energy
resolution of 0.1 MeV at 1 MeV. Cross-calibration with CR-39 was performed to confirm the
linearity of the detector. The targets used in this experiment were Al and plastic (CH) foils of
50 nm, 200 nm and 6 µm thickness.

7 Electron multiplying charge-coupled device.
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Figure 1. Proton energy spectra obtained from Thomson parabola spectrometer:
(a) typical spectrum from a 6 µm target, (b) spectrum obtained from 50 nm Al
target with type I peak, (c) spectrum obtained from 50 nm CH target with type II
peak and (d) spectrum obtained from 200 nm Al target with type I peak.

3. Experimental results

The functional form of the proton energy spectra from 6 µm foil targets (either CH or Al) did not
differ significantly from similar experiments on other laser systems, e.g. those reported in [13].
The spectra were quasi-exponential; figure 1(a) shows a typical spectrum. Quasi-exponential
spectra are ubiquitous in laser-driven proton acceleration (see [26, 27] for recent examples).

The energy spectra from 50 nm and 200 nm foils were strikingly different from the 6 µm
data in that they exhibited a broad spectral peak between the high energy cut-off and the
low energy spectrometer limit. For the 50 nm targets, this peak sat between 0.5 and 1.4 MeV.
These observations were highly reproducible as 22 out of 23 shots taken with the 50 nm targets
exhibited a broad spectral peak (i.e. 95%). Only one shot produced a spectrum without a peak.
These shots were taken in a number of sets on different days. Examples of these spectra are
shown in figures 1(b)–(d).
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Figure 2. Proton energy spectra obtained from Thomson parabola spectrometer.
Top row: the five spectra obtained from 50 nm CH targets that exhibited a
type II peak. Bottom row: the single spectrum obtained from a 50 nm Al target
that exhibited a type II spectrum.

As figures 1(b) and (c) show, there are two general types of spectral peak. The first type is
where the spectrum falls on going from the peak to the low energy limit (16 shots; denoted as
type I). The second type is where the spectrum initially falls and then rises again on going from
the peak to the low energy limit (6 shots; denoted as type II).

The average position of the type I peaks is 0.7 ± 0.3 MeV. The average position of the
type II peaks is 1.1 ± 0.1 MeV. On taking the average FWHM of the type I peaks, one obtains
1.1 ± 0.4 MeV. All of the CH targets (5 shots) produced type II spectra, whereas all but one
of the Al targets produced type I spectra. For clarity, the full range of the data obtained is also
presented in this paper. In figure 2, all six spectra that exhibited a type II peak are shown, and
in figure 3 all 16 spectra that exhibited a type I peak are shown. Note that the ion signal at the
energy of the peak is much higher than the signal measured at the same energy from the thicker
targets. Therefore this spectral modification also results in enhancing the flux in certain energy
ranges.

The slight variation in the spectra (e.g. the position of the single peak in the type I
spectra) from shot to shot was attributed to the two aspects of the experiment which were the
most difficult to stringently control: the intensity distribution in the laser focal spot and the
laminarity/rugosity of the ultra-thin foils.

4. Interpretation

There are a number of mechanisms that could generate a spectral peak in the target-normal
spectrum similar to that observed in the experiment. Those mechanisms that rely on limiting the
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Figure 3. Proton energy spectra obtained from Thomson parabola spectrometer:
all 16 shots from 50 nm Al targets that produced type I spectra.

spatial size of the proton source [14, 15] can be eliminated as the uncleaned foils would have
formed contaminant layers of similar thickness irrespective of the actual foil thickness and these
contaminant layers would cover the entire foil. As the composition of the contaminant layers
was not controlled, and typically the relative proton fraction would be high, the ‘two species
mechanism’ [28]–[30] is unlikely to account for the spectral peak, and would not account for
the dependence on target thickness. The ‘two species mechanism’ has been used to explain some
experimental results, notably those by Allen et al [31]; however, an important reason why the
‘two species mechanism’ is unable to explain these results is that no such spectral modulations
were observed in the 6 µm targets. Another possibility is that the spectral peak is formed by the
contribution of protons that are accelerated at the front of the target by the light pressure of the
laser pulse [3]–[5], [32]. The energy of ions produced by hole-boring RPA is given by,

ε = mi c
2

[
24

1 + 2
√

4

]
, (1)

where 4 = I/ρc3 [33]. At I = 1019 W cm−2 and ρ ≈ 1000 kg m−3 (water or oil contaminants),
ε ≈ 7 keV. Therefore front surface acceleration cannot account for this spectral peak, in
agreement with previous experimental work [34].

In the absence of any obvious explanation for these observations, numerical simulations
of the experiment were carried out. The code used was the two-dimensional (2D) PIC code,
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Figure 4. Proton energy spectra from 2D PIC simulations at 200 fs: (a) spectrum
from 80 nm ‘Al’ foil simulation of protons travelling at <0.5 mrad to target
normal, (b) spectrum from 80 nm ‘CH’ foil simulation of protons travelling at
<0.5 mrad to target normal, (c) spectrum from 80 nm ‘Al’ foil simulation of all
protons and (d) spectrum from 80 nm ‘CH’ foil of all protons.

OSIRIS [35]. The simulation box was 30 µm longitudinally (x) and 20 µm in the transverse
(y) direction. In the transverse direction, 10 000 cells were used, and 16 000 cells were used
in the longitudinal direction. Given the limitation in computational resources the following
models were used: the CH targets were modelled by a target consisting of H+ at a density of
80ncrit and D+ (as a ‘heavy’ ion species) at a density of 40ncrit.8 The Al targets were modelled
by a target consisting of D+ at a density of 120ncrit, with a 10 nm thick proton bearing layer
with same composition as the ‘CH’ target on the rear of the target. Electrons and protons
were represented by 256 macroparticles per cell, and heavy ions were represented by 128
macroparticles per cell. The target was 80 nm thick, 10 µm wide and was located 6.05 µm
from the left-hand boundary. The laser pulse propagated along the +x-direction from the left-
hand boundary and was normally incident. The pulse had a 40 fs FWHM duration, a FWHM
intensity of 2.2 × 1019 W cm−2, and a FWHM spot diameter of 4.4 µm. The simulation was run
up to 250 fs. Another simulation was also carried out with a ‘CH’ target that was 1 µm thick.

When the proton energy spectra of both targets were calculated using all protons, the
agreement with experiment was poor—see figures 4(c) and (d). The ‘CH’ target spectrum was

8 ncrit = 2πmecε0/e2λL is the non-relativistic critical density, which is ≈1027 m−3 for λ = 1 µm.
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monotonically falling with no strong spectral features. The ‘Al’ target spectrum produced two
peaks instead of a single peak. It was therefore decided to calculate the energy spectra in a
way that better represented the actual spectrometer—the spectrum was calculated using only
those protons travelling at an angle of 0.5 mrad to the target normal. The ‘angularly filtered’
(i.e. <0.5 mrad) spectra were quite different. In figure 4(a), the filtered proton energy spectrum
for the ‘Al’ target is shown, and that of the ‘CH’ target is shown in figure 4(b). This agrees very
well with the experimental results. In the case of the 1 µm thick ‘CH’ target, the spectrum was
exponential irrespective of angular filtering. In the 80 nm ‘CH’ simulation, the spectral peak
sits at 0.98 MeV and the form of the spectrum is very much like the type II spectra. In the ‘Al’
simulation, the spectral peak sits at 0.58 MeV, and the form of the spectrum is very much like
the type I spectra. There is therefore good qualitative and quantitative agreement between these
simulations and the experiments.

A detail examination of the simulation results showed that the front surface acceleration
was negligible as expected. The effect of the heavy ions in the ‘CH’ simulation is also negligible.
Only when one examines only those protons that are very close to the target axis does one
find that the heavy ions generate a small modulation at 0.5 MeV, but when one integrates over
all protons (with or without angular filtering) this modulation is smeared out. This means that,
for these conditions, the PIC simulations indicate that the ‘two species mechanism’ used by
Allen et al [31] does not play a significant role in these observations.

On the basis of these simulation results it was concluded that the spectral modification was
dominated by an effect that caused angular deflection of the protons. There are two possible
causes—a transverse electric field or an azimuthal magnetic field. If it is an electric field, then,
over 200 fs (i.e. a distance of 2 µm), a 500 keV proton would have to experience an average
electric field of 109 V m−1 to be deflected by 1 mrad. If it is a magnetic field then, over 200 fs,
a 500 keV proton would have to experience an average magnetic flux density of ≈50 T. On
examining the PIC simulation output, it was found that the Ey component of the E-field was
negligible. The Bz component of the B-field was not. A quasi-static B-field with flux densities in
excess of 1000 T develops at the back of the target. The extent of this region is several microns in
y and 1–2 µm in x . This is shown in figure 5(a), for the case of the 80 nm ‘CH’ target simulation.
This is more than sufficient to strongly deflect protons away from the target normal (20 mrad in
200 fs).

The generation of this strong magnetic field emerges from the transverse spatial profile
of the sheath field at the back of the target. From the induction equation, Ḃ = −∇ × E, one
can estimate the growth rate at early times to be Ḃz ≈

√
nfkBTf/ε0/rf, where nf is the fast

electron density, Tf the fast electron temperature and rf the fast electron beam radius. In very
thin targets, rf will be close to the laser spot radius. For typical parameters (nf ≈ 1027 m−3,
Tf ≈ 1 MeV, rf ≈ 5 µm), one obtains a growth rate of the order of 1017–1018 T s−1. This means
that magnetic fields of the order of 1000 T will grow in tens of femtoseconds. The generation of
strong magnetic fields occurs for both thick and thin targets.

The crucial difference between the two lies in the details of the spatial and temporal
evolution of the magnetic fields. In contrast to previous numerical studies close to these
experimental parameters, the B-fields observed in the 80 nm PIC simulations exhibit proton-
focusing regions as well as a larger defocusing region. In the case of the thicker target, the
protons move into a region of weak magnetic field after about 7.5 µm (figure 5(b)), and only
experience a defocusing magnetic field if at all. In the thinner target, the effect of the bowed
electric field structure at early times is to create a region of focusing magnetic field close to
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Figure 5. Plots of magnetic flux density, Bz(T), in simulation of 80 nm ‘CH’
target (a) and 1 µm (b) at 200 fs. Plots of proton density (log10(np/ncrit)) in
simulation of 80 nm ‘CH’ target (c) and 1 µm (d) at 200 fs. Foil is initially
positioned at x = 6.05 µm. Note that a region where Bz >1000 T extends 1–2 µm
away from the rear surface.

the target axis. The protons that are close to the mid-plane move through a region of focusing
magnetic field (between 7 and 8 µm as figure 5(a) shows). The temporal evolution of this region
of focusing magnetic field is shown in figure 6 in which we show the Bz component of the
magnetic field in the 80 nm ‘CH’ simulation at 100, 150 and 200 fs, and we indicate the focusing
region. The same plots for the 1 µm ‘CH’ simulation are also shown to show the absence of any
focusing region.

The generation of this focusing region can be at least partly explained by considering E
and −∇ × E. The electric field at the back of the target is not static, but it evolves constantly
as the protons are accelerated. From the PIC simulations, it was found that the electric field
component that dominated the magnetic field growth was the Ex component, i.e. Ḃz ≈ ∂y Ex .
What differentiates the thick and thin targets is the detailed evolution of Ex , which is illustrated
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Figure 6. Top row: plots of magnetic flux density, Bz(T), in simulation of 80 nm
‘CH’ target at various times (100, 150 and 200 fs) showing the evolution of
the region of magnetic field that can focus the protons. The focusing region is
indicated by the label ‘MFR’. Bottom row: plots of magnetic flux density, Bz(T),
in simulation of 1 µm ‘CH’ target at various times (100, 150 and 200 fs). Note
the clear absence of a focusing region in the 1 µm simulation.

by figure 7. In the case of the simulation of the 80 nm target it was found that the Ex sheath field
was strongest in a thin linear region parallel to the target surface which is slightly bowed at the
centre. This bowing leads to a transverse variation in Ex which changes |∇ × E| and thus the
growth rate of the magnetic field. In contrast the simulation of the 1 µm target shows that the Ex

profile is less bowed at early times (100 fs), and the magnitude of the sheath field decays more
rapidly. Figure 6 indicates that the most important time for the magnetic field growth is between
100 and 150 fs. Examining −∇ × E between these times shows how the changing electric field
structure is actually generating the magnetic field. This is shown in figure 89 in which we show
−∇ × E at 100 and 125 fs in the 80 nm ‘CH’ simulation to illustrate how this field structure leads
to the generation of a focusing region. Figure 8 shows that in this 25 fs period there is a region
of sustained growth of a focusing B-field, and it is this that gives rise to the focusing region seen
in figure 6. Note how the magnetic field growth rate compares to the simple order-of-magnitude
estimate.

5. Modification of spectrum by magnetic field

The majority of the magnetic field in both simulations acts to defocus the proton beam; however,
the analysis of the proton spectrum for various degrees of angular filtering indicate that the

9 For these plots, filtering via Fourier transform methods has been used to eliminate high-frequency noise in the
PIC output.
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Figure 7. Top row: plots of Ex (TV m−1) in the 80 nm ‘CH’ target simulation at
different times. Left–right: at 100, 125 and 150 fs. Bottom row: plots of Ex in
the 1 µm ‘CH’ target simulation at different times. Left–right: at 100, 125 and
150 fs. Note how the sheath field is strongest in a thin strip that runs parallel to
the target surface and is slightly bowed at the centre.

degree of spectral modification that this causes is minimal. This is why the full spectrum from
the 1 µm target simulations differs little from the angularly filtered spectrum. Largely this is not
unexpected as the defocusing magnetic field is strongest far from the target normal axis where
proton flux is low. However, the focusing region of the magnetic field that is observed in the
thin target simulations sits close to the target normal axis where the proton flux is strong.

The presence of a region of focusing magnetic field can modify the energy spectrum in a
similar way to the effect observed in the laser-driven micro-lens [8]. The angular deflection of
a proton is the product of its ‘dwell time’ in the B-field and the gyro-frequency of the field, i.e.
1θ = ωg,pτ . This can be put in the following form:

1θ =
eBτ

mp
, (2)

where B is the average B-field in the focusing region, and τ is the ‘dwell time’. Since protons
are being continuously accelerated at the back of the target, although the accelerating field
diminishes in time, higher energy protons should have longer dwell times. On the other hand,
as it takes a certain amount of time for the focusing B-field to grow (which is illustrated by
figure 6) the highest energy protons cannot have the longest dwell time—the peak dwell time
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‘CH’ simulation. This shows that during this period there is sustained growth
of a proton-focusing B-field near the target axis between 7 and 8 µm in x , and
between 6 and 12 µm in y.

must be for protons of an intermediate energy. Spectral modification can therefore occur and
be determined by the variation in dwell time with proton energy. Note that the finite spatial
extent of the focusing region also implies that the highest energy protons are unlikely to have
the longest dwell times.

This can be illustrated via a simple model calculation. Suppose that we have a proton beam
with the following momentum distribution function:

f ∝ exp

(
−

p2
x

2Tx

)
exp

(
−

p2
y

2Ty

)
, (3)

where p is normalized to mpc, and T is normalized to mpc2. The effect of propagation through
a focusing magnetic field (in the z-direction) is to perform two rotations on each two separate
distributions each containing half the number of particles in px–py phase space separately. Two
rotations are done assuming that an equal number of protons enter each lobe of the focusing B-
field. The angle of rotation is determined by equation (2). Since the rotation is only a function
of energy, this transforms the distribution function by,

f (px , py) → f (px cos 1θ + py sin 1θ, py cos 1θ − px sin 1θ), (4)

for py > 0. For py < 0, the same transformation is applied but with −1θ . Once both rotations
are done, the two are added to recover the full distribution function. For the dwell time, τ , we
will use the following expression which is purely a model expression that gives a peak dwell
time at intermediate energy,

τ = (5 × 10−14) sin(πε/1.5Tx) s, (5)

for ε < 1.5Tx and τ = 0 for ε > 1.5Tx .
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Figure 9. Results of simple model calculation to demonstrate effect of spectral
modification by magnetic fields (see section 5). Left hand figure is a px–py plot
of the initial proton distribution. Right hand figure is a px–py plot of the proton
distribution after rotations have been performed. The depression in the modified
distribution is indicated by the label D, and the ‘island’ in the distribution that
will produce a spectral peak is labelled I.

In figure 9, we plot the initial distribution function given by equation (3), the distribution
function after being transformed by the magnetic field. For these calculations, Tx = 0.0008
(0.75 MeV), Ty = 4 × 10−7 (38 keV), and B = 1500 T, which are representative of the proton
emission close to the target axis in the 2D PIC simulations. The simple model calculation shows
that a small ‘island’ is formed in the px–py phase space with a depression just to the left of it.
This ‘island’ will lead to a spectral peak if the spectrum is only measured over a limited angle.
The depression is formed by over-focusing of the protons at those energies where the dwell time
is largest.

In figure 10, we show the px–py phase space distribution of the protons from the 2D PIC
simulation of the ‘CH’ target. This has similar features to the model calculation. The spectral
peak shown in figure 4(d) is due to the ‘island’ feature that lies close to py = 0 and px = 0.045.

The spectral modification by the focusing region of magnetic field can therefore be
summarized by the following qualitative explanation: the net action of the magnetic field on the
proton distribution, with an energy-dependent dwell time in the field, is to deflect a portion of the
distribution away from the axis (by over-focusing), leaving a solitary ‘island’ in the distribution
that will generate a spectral peak when the spectrum is only measured over a limited solid angle.

The above discussion is adequate to understand the spectral modification in the CH targets.
In the case of the Al targets, one also has to account for the effect of the substrate ions (i.e. the
‘bulk’ Al ions). The PIC simulations indicate that the effect of the substrate ions is to eliminate
the low energy ions either by raising the low energy cut-off of the protons close to the target axis
or by deflecting the low energy protons out of the cone of observation (due to the curvature of
the substrate ion front). The elimination of the low energy protons results in the single-peaked
spectrum seen both in the experiment and the PIC simulations.
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Figure 10. The px–py phase space distribution of the protons from the 2D PIC
simulation of the ‘CH’ target at 200 fs. The ‘island’ feature, which produces the
spectral peak is labelled I and sits close to px = 0.045, i.e. 0.95 MeV.

6. Conclusions

In conclusion, proton beams from ultra-thin (50–200 nm) foils irradiated by a 1019 W cm−2,
40 fs laser pulse were found to have energy spectra that contained a broad peak near to 1 MeV.
By carrying out 2D PIC simulations of the experiment, it has been concluded that quasi-static
magnetic fields at the rear of the target are responsible for producing these spectral peaks. As the
spectrometer only measures those protons that are emitted into a narrow cone, the quasi-static
magnetic field will strongly shape the spectrum by deflections in the field that are dependent on
the dwell time of the proton in the field. This produces broad spectral peaks. This may provide
a new or complementary route to optically controlling the energy spectrum of laser-accelerated
proton beams, in contrast to the ‘target engineering’ approach, which has previously been
advocated [14]. This work also highlights a more generic issue—that of properly accounting
for the limited angular sampling of magnetic spectrometers when interpreting ion acceleration
experiments.
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