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Abstract
An investigation is taking place into a new classical scattering phenomenon
called ‘collective Rayleigh scattering’. A collection of dielectric particles
pumped by a laser radiation field may form a strong density grating on the
scale of the radiation wavelength. The particles then coherently scatter the
incident radiation. Current theoretical research is confined to collective
Rayleigh scattering from particles small compared with the radiation
wavelength, for which there are many possible applications in the field of
nonlinear optics. However, by considering larger Mie particles, it can be
seen that there are also potential applications in the areas of optical particle
characterization and discrimination. This paper outlines the theoretical
framework of CRS and the first observations from preliminary experiments
utilizing a standing-wave gradient force trap.

Keywords: Rayleigh scattering, collective scattering, small dielectric
particles, density grating, Mie scattering, optical trapping, gradient force trap

1. Introduction

Dielectric particles that are small compared to the wavelength
of an incident radiation field exhibit the well known
Rayleigh scattering behaviour [1]. A new classical scattering
phenomenon called ‘collective Rayleigh scattering’ (CRS) [2]
has been predicted which involves the spontaneous formation
of a particle density modulation on the scale of the radiation
wavelength, thereby forming a refractive density grating.
Radiation scattering from such an ensemble of particles is
therefore coherent. In the field of non-linear optics, these
density gratings represent potentially novel nonlinear optical
media with applications as artificial Kerr media [3], tunable
photonic bandgap materials [4] and also to facilitate feedback
in random lasers [5]. A potentially useful application in
the field of optical particle characterization is outlined in
this paper.

The grating may be spontaneously generated via the
interaction of the particles with a radiation pump field
and a small counterpropagating radiation probe field (which
may arise from noise due to random fluctuations in the

particle density) that produces periodic ponderomotive forces
in the particle ensemble. The collective nature of CRS
results in an exponentially growing counter-propagating
radiation field. The phenomenon is analogous to the
periodic bunching of free electrons in the free-electron
laser (FEL) [6] and atoms in the collective atomic recoil
laser (CARL) [7], both processes resulting in the emission of
coherent radiation.

Besides the theoretical framework of CRS, the practical
considerations required to experimentally observe this
phenomenon in an optical trap are also presented here.
The initial experimental set-up is that of a standing-wave
gradient trap. Such a trap immediately imposes large periodic
ponderomotive forces on the particles, bypassing the need for
them to grow spontaneously. This configuration is being used
to determine the feasibility of optically confining, for a long
enough time frame, the large number of particles necessary to
allow spontaneous CRS to occur. It will be emphasised that
CRS is rapidly evolving process therefore this time frame can
be short (of the order of ms or µs). Steady-state trapping of
large numbers of particles is not necessary.
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Figure 1. Schematic of a CRS experiment.

2. Theory

A simple 1D model is used to demonstrate the principle of
CRS. It consists of a strong plane pump wave, scattered by
an initially uniform spatial distribution of dielectric Rayleigh
particles, and an initially very weak plane wave probe field.
The probe field is approximately counterpropagating to the
pump field (the pump–probe misalignment is exaggerated in
the figure for clarity), and is enclosed in a unidirectional ring
cavity, as shown schematically in figure 1. The medium is
taken to be free space.

The form of the E-field in the cavity is

E = E1(z, t) + E2(z, t) (1)

where E1(z, t) = [A1(t)eik(z−ct) + c.c.]x̂ is the E-field of the
initially weak probe field and E2(z, t) = [A2e−ik(z+ct) + c.c.]x̂
is the E-field of the strong pump field, which we assume here
to be of constant amplitude, c is the speed of light in vacuo,
k = 2π/λ is the wavenumber and x̂ is a transverse unit vector.
It is assumed that only one mode of the cavity undergoes
significant interaction with the particles and that both the
pump and probe fields are resonant with a cavity mode, i.e.
k = lπ/Lcav where l is an integer and Lcav is the cavity round-
trip length.

The force on the j th particle can be derived from the
Lorentz force equation to be [2]

Fj = ∂dj

∂t
× B(zj , t) (2)

where B(z, t) = 1
c
ẑ×(E1−E2) is the magnetic field due to the

electromagnetic waves in the cavity, dj is the dipole moment
of the j th particle induced by the E-field at z = zj the axial
position of the j th particle given by

dj = ε0Vp

[
χ(A1(t)e

ik(z−ct) + A2e−ik(z+ct)) + c.c.
]
x̂ (3)

ε0 is the permittivity of free space and χ = χ1 + χ2 is
the susceptibility, Vp = 4πa3/3 is the volume and a is
the radius, respectively, of the particle. Substituting for B

and dj in equation (2) and following the derivation described
in [2], the dynamics of the particles under the influence of the
electromagnetic fields are described by

dzj
dt

= pj

M
(4)

dpj

dt
= 2ε0Vp

[
iχA2(A1(t)e

2ikzj − c.c.)+χ2(|A1(t)|2 − A2
2)
]

(5)

where pj is the z-component of the momentum of the j th
particle and M is the mass of the particle. The dynamics of
the probe field are found from Maxwell’s wave equation(

∂2

∂z2
− 1

c2

∂2

∂t2

)
E(z, t) = µ0

∂2P(z, t)

∂t2
(6)

where µ0 is the permeability of free space and P(z, t) is a
macroscopic polarisation arising from the contributions of the
dipole moments of all the particles, i.e.

P(z, t) =
N∑

j=1

dj δ(r − rj (t)). (7)

Substituting for E and dj and again following the derivation
of [2], it can be shown that the evolution of the complex
amplitude of the probe field, A1(t), is described by

dA1

dt
= ikVpA2χNp

2
〈eiθ 〉 − cT

Lcav

A1 (8)

where 〈· · ·〉 = 1
N

∑N
j=1(· · ·)j denotes an average over the

ensemble of N particles in the interaction region, Np is the
average number density of particles in the cavity interaction
volume. Radiation losses at the mirrors are modelled using a
phenomenological loss of TA1 per cavity round trip, i.e. a loss
rate of cT A1/Lcav where T = 1−R is the mirror transmission
coefficient and R is the corresponding reflection coefficient.

As shown in [2], equations (4), (5) and (8) can be reduced
to a universally scaled form with a minimum number of free
parameters in the limit χ1 	 χ2, where the dispersive part of
the susceptibility dominates the absorptive part:

dθj
dt̄

= p̄j

dp̄j

dt̄
= −(Ā1eiθj + c.c.)

dĀ1

dt̄
= 〈e−iθ 〉 − κĀ1

(9)

using the dimensionless parameters given by

θj = 2kzj , p̄j = pj

ρcMc2
, t̄ = 4πρcct

λ

Ā1 = −2i
√

ε0

ρcNpMc2
A1, κ = λ

4πρc

T

Lcav

ρc =
(
ε0χ

2
1 A

2
2NpV

2
p

4Mc2

)1/3

(10)

where κ is a cavity loss parameter and ρc is a gain
parameter. The initial conditions for equations (9) correspond
to a very weak probe field intensity and particles with a
uniform distribution of positions and a Gaussian momentum
distribution with width σp given by

σp = 1

ρc

√
kBT

Mc2
(11)

where kB is Boltzmann’s constant and T is the temperature.
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Figure 2. CRS simulation showing an exponential increase in the
probe power as a function of time.

3. Example simulation

As an example of CRS, we consider a collection of free
latex nanoparticles (a = 25 nm, refractive index n = 1.59,
density = 1.05 × 10−3 kg m3, χ = (n2 − 1)/(n2 + 2) = 0.34
enclosed in a high-quality ring cavity. Other parameters used
in the simulation are: pump power P = 1.25 W, pump
wavelength λ0 = 532 nm, beam radius = 10 µm, Lcav =
10 cm, R = 0.96, N = 4 × 106 and T = 300 K.

Figure 2 shows the evolution of the probe field intensity
and the bunching parameter |〈exp(−iθ)〉| for the above
parameters, calculated using equations (9). The bunching
parameter represents the amplitude of the particle density
modulation on the spatial scale λ/2. Its value ranges from zero
for uniformly distributed particles, to one for particles perfectly
bunched at a single value of θ . It can be seen from figure 2 that
the simulation predicts very strong exponential amplification
of the probe field simultaneous with the spontaneous formation
of a strong particle density modulation on the radiation
wavelength scale, the distinctive feature of CRS. Although the
model at present contains several simplifying but restrictive
assumptions (1D plane wave, constant pump field), the results
it predicts are very interesting and clearly warrant further
investigation. A more detailed model of CRS which should
better represent a real experiment and includes, for example,
pump depletion, pulse propagation, diffraction effects and
Brownian motion, is currently being developed and will be
described in a future publication. Initial results suggest that the
principle features of CRS are still present when these additional
effects are included in the model.

4. Experimental requirements

To observe CRS in an experiment, a large number of particles
must be present within the scattering volume, i.e. the beam,
for the time frame of the evolution. The planned experimental
configuration resembles that of a single-beam gradient force
trap or optical tweezers [8], which have been used for a number
of years in the trapping and manipulation of small particles [9].
The pump beam is tightly focused to obtain a large intensity
thereby maximizing the backscattered radiation probe field.
A gas (air) has been selected as the background medium
though a liquid medium may also be feasible. Gravitational
settling of the sub-micron particles in the gas medium must
be counteracted to some extent. The radial component of the

(a)

(b)
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Fgrad,r
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Figure 3. Forces acting (a) axially and (b) radially on a particle in
the standing-wave gradient trap.

strong pump field has been proposed for this task such that
the radial gradient force of the strongly focused pump beam,
which is the time-averaged Lorentz force acting on the dipole
induced by the pump field, is comparable to the downwards
gravitational force.

Presented in this paper are the first results from
preliminary experiments conducted with a standing-wave
gradient force trap [10]. The pump beam is normally incident
onto a mirror creating a standing wave of periodλ/2. With such
a trap, the initial counterpropagating probe field (essentially
the reflected pump field) is large so that strong ponderomotive
forces are immediately imposed onto the particles. The
particles should then quickly bunch at the anti-nodes of
the standing wave, i.e. the particle density grating does not
spontaneously build up from noise. It is evident that bunching
should be easier to achieve with a standing-wave trap than with
a single-beam trap.

The main motivation behind these experiments is to
determine the number of particles that can be reasonably held
within the scattering volume for a suitable time using an optical
trap. For true CRS evolving spontaneously from noise, the
number of particles should be sufficiently large so that the
potential wells can each be occupied by a reasonable number
of particles, enabling growth of the probe field to a value
comparable with that of the pump.

A schematic representation of the forces on a particle in
a gradient force trap is shown in figure 3. The gradient and
scattering force may be, respectively, written in the form [11]

Fgrad(z, r) = 2πn2a
3

c

(
m2 − 1

m2 + 2

)
∇I (z, r) (12)

Fscat (z) = 8πn2k
4a6

3c

(
m2 − 1

m2 + 2

)
〈S(z, r)〉T (13)

where n2 is the medium refractive index, m = n/n2 is the
relative refractive index of the particle, k is the wavenumber,
∇I is the pump beam intensity gradient and 〈S(z, r)〉T is a
time-averaged version of the Poynting vector. The formalism
of [10] has been applied for the particular case of a standing-
wave trap. The steep intensity gradients of the standing wave
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define the axial gradient force, directed towards the anti-node
in each period. If the beam waist is located at the mirror
surface, then the scattering force is directed towards the mirror
because of the unavoidable losses occurring upon reflection at
the mirror surface. The radial gradient force, defined by the
Gaussian profile of the pump beam cross section, is directed
towards the beam axis. The downwards force (comprising
gravity and buoyancy) is given by

|Fdown| = 4πa3g

3
(ρ − ρ2) (14)

where ρ and ρ2 are the respective densities of the particle and
medium.

A thermophoretic force arises from the absorption of pump
energy by the mirror that sets up a convective flow in the
medium [12]. It is directed upwards in the region of interest
close to the mirror and its magnitude is given by

|Ftherm| = 12πη2a|∇T |
ρ2T

Cs

(
σ2
σ

+ Ct
λmfp

a

)
(
1 + 3Cm

λmfp

a

)(
1 + 2 σ2

σ
+ 2Ct

λmfp

a

)
(15)

where η, σ2, T and |∇T | are the medium viscosity, thermal
conductivity, ambient temperature and temperature gradient
respectively, σ is the particle thermal conductivity, Cs = 1.17,
Ct = 2.18 and Cm = 1.14 are accommodation coefficients
from gas kinetic theory and λmfp is the mean free path of the
medium molecules given by

λmfp = kBT

4
√

2πpa2
2

(16)

where p is the medium pressure and a2 = 0.185 nm is the
molecule radius. At pressures close to atmospheric pressure,
the convective flow can be so rapid as to dominate the process.
Therefore, it is desirable to conduct experiments at a somewhat
lower gas pressure to reduce the thermophoretic force (which
is proportional to pressure), thus slowing the convective flow.

To hold a particle in a standing-wave trap four criteria
must be met:

(a) The axial gradient force must exceed the scattering force
for axial confinement.

(b) In the lower part of the beam, the sum of the upwards
forces must exceed that of downwards forces to prevent
particles falling out of the beam.

(c) In the upper part of the beam, the sum of the downwards
forces must exceed that of the upwards forces to prevent
particles being lifted up and out of the beam.

(d) The energetic depth of trap must greatly exceed the
kinetic energy of the particle for trap stability, i.e. particle
Brownian motion must be negligible.

Satisfying all criteria for many particles (102−106)

simultaneously would clearly be an extremely complicated to
model and indeed difficult to obtain in experiment. However,
CRS rapidly evolves on a µs–ms time scale therefore true
optical trapping of all particles is not a necessity. The purpose
of the initial experiments is to optimize the experimental
conditions such that the number of particles in the scattering
volume for a given time interval is maximized.

Optical Isolator

Focusing Lens

Vacuum
Chamber

Mirror

}

Pump Laser

CCD

Photodiode

Figure 4. Schematic top view of the experimental set-up.

5. Experimental set-up

A top view of the experimental set-up with the standing-
wave trap is displayed in figure 4. These experiments have
been conducted at the University of Strathclyde TOPS user
facility [13]. The pump laser is a CW Nd :YVO4 laser
operating at wavelength λ0 = 532 nm and power P up to
5 W. It is focused onto the surface of a dielectric mirror
inside the vacuum chamber. The particles are puffed into the
evacuated chamber with a small amount of air and fall under
gravity until they pass into the beam path, whereupon they are
subject to the gradient forces. After initial particle injection the
pressure is ∼150 mbar. Through slow bleeding of the pressure,
∼10 mbar can be achieved with many particles still present in
the chamber. This allows for control of the thermophoretic
force. Radiation scattered through the side viewports of the
chamber allows the particles in the beam to be imaged with
CCD and digital cameras.

The number of particles in the beam can be estimated
from the measured intensity of the pump beam upon exiting
the chamber. Assuming mono-sized particles and no multiple
scattering, the attenuation of the pump field due to the presence
of the particles is given by the Bouguer–Lambert–Beer (BLB)
law

I = I0 exp[−NpCexth] (17)

where I and I0 are the final and initial beam intensities
respectively, Np = 2N/πw2

0h is the number density of the
particles, the factor of 2 denotes the double crossing of the
particles by the pump beam, Cext is the extinction cross section
of the particles and h is the distance traversed by the beam.
Hence the number of particles in the beam N is given by

N ∼ − ln

(
I

I0

)
πw2

0

4Csca

(18)

assuming Cabs
∼= 0 and Cext

∼= Csca where Cabs and
Csca are the particle absorption and scattering cross sections
respectively. The BLB law assumes no scattered light is
detected, i.e. only the transmitted light is detected. However,
when measuring the on-axis transmission, a real detector
will also detect the forward scattered light in a finite solid
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angle about the axis. This diagnostic also picks up the
backward scattered light in the same solid angle. To keep
these contributions to the detected signal negligible (<1%),
the detector solid angle is ∼10 mrad only.

Titanium dioxide (TiO2) powder has been the particle
source for these initial experiments. These particles have a
large scattering cross section (n = 2.7) and a small absorption
cross section (Im[n] ∼ 10−4) making them ideal for optical
trapping. A particle size distribution analysis1 revealed a
spread in particle radius from 100 nm to 2 µm. However,
there were sufficient numbers of particles (around 1 in 7)
in the desired range (a = 250 nm ± 10%) as required by
the experimental design. An initial wide size distribution
is of no concern because of the self-selecting nature of
the trapping process: the smallest particles have sufficient
Brownian motion to escape the trap and the largest particles are
subject to large scattering forces which expel them from the
trap. These TiO2 particles do not satisfy the Rayleigh criterion
(a < λ/10) and are so-called Mie particles (a ∼ λ) thus
requiring the use of generalized Lorentz–Mie theory to model
the scattering [14]. These particles would behave as Rayleigh
particles with an infra-red pump beam (λ > 2.5µm). Trapping
them with a visible beam, however, remains a useful first
experimental study because of the relative ease of operation and
diagnosis in the visible region as compared with the infra-red.
The gradient forces are also stronger at the shorter wavelength.

6. Experimental observations

Initial experiments with the pump beam focused to a waist size
of w0 = 60 µm and of power P = 2 W have demonstrated the
influence of the thermophoretic force on the trapping process
(the gas pressure here is ∼150 mbar). Presented in figure 5
are photographs of particles in the pump beam at various time
intervals up to 2 h after injection. Initially, particles are falling
through the beam in the air currents used to inject them into the
chamber, see figure 5(a). However, as these currents subside
and the mirror heats up, the thermophoretic force increases in
magnitude eventually dominating the evolution. This results
in an upwards convective flow of particles through the beam,
figures 5(b)–(d), i.e. there is no radial confinement of the
particles. For the state depicted in figure 5(d), the average drop
in power due to the presence of the particles is ∼16%. Hence,
from equation (7), at any one time the number of particles in the
beam N ∼ 600. The local temperature gradient is unknown
therefore the thermophoretic force is estimated by equating it
to the Stokes drag force Fdrag as the particle flows through the
medium at a constant velocity, that is,

|Ftherm| ∼ |Fdrag| = 6πηa3v

Cc

(19)

where v is the magnitude of the particle terminal velocity and
Cc is the Cunningham correction factor to Stokes’ law due to
the small particle size [15] given by

Cc
∼= 1 + C1[C2 + exp(−C3a/λmfp)]

λmfp

a
(20)

1 Measurements were made using a Horiba Instruments (Northampton, UK)
LA-920 particle size analyser.

(a) (b)

window mirror

(d)(c)

 

Figure 5. Photographs of particles in the pump beam at a time of
(a) t = 30 s, (b) 5 min, (c) 30 min and (d) 180 min after particle
injection into the vacuum chamber.

where C1 = 1.21, C2 = 0.40 and C3 = 0.78 are empirical
constants. The particle velocity is ∼3 mm s−1 hence Ftherm ∼
100 fN which is much larger than Fdown = 3 fN or Fgrad (max)
∼ 5 fN.

Focusing the pump beam more tightly to a waist of 30 µm
increases the radial gradient force to a maximum of ∼30 fN.
Beam focusing is a compromise between achieving a large
enough radial gradient force to hold the particles in the beam
for the longest time and maintaining a long enough Rayleigh
length zR = πw0/λ to maximize the number of useful
potential wells, i.e. length of the scattering volume. Reducing
the gas pressure by a factor of 10 reduces the thermophoretic
force to ∼10 fN. The radial gradient force is thus large enough
to counteract the thermophoretic force and radial containment
may occur. Indeed this has been observed experimentally.
Longitudinally, however, with radially confined particles, rapid
motion of the particles towards the mirror is observed. This is
a consequence of Mie particles being used at this stage. The
diameter of the TiO2 particles is almost equal to the pump
wavelength so they each spatially occupy approximately two
potential wells. The axial gradient forces exerted on these
Mie particles are then effectively cancelled out leaving the
scattering force directed towards the mirror as the dominant
force.

7. Application note

When considering the larger particles with a � λ, it can be
seen that there are potentially useful applications in the areas of
optical particle characterization and discrimination. Rayleigh
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Figure 6. Decrease of net ponderomotive force with increasing
particle size.

particles bunch under the influence of the ponderomotive
forces in the bottom of the periodic potential wells. By
considering spherical particles on axis that have radii of the
same order as the radiation wavelength or less, it can be shown
that the net force on such particles is zero when the particle
radius satisfies the condition

4πa

λ
= tan

(
4πa

λ

)
. (21)

In addition to the trivial solution a = 0, (21) is satisfied when
a/λ = 0.36, 0.62, 0.86, . . . , as shown in figure 6.

Particles with these sizes do not experience a net optical
ponderomotive or gradient force and will not form part of
any density grating. It can be envisaged that this could
be used as the basis of novel methods for discriminating
between particles of differing sizes in a sample. An illustrative
example is that of a collection of particles flowing slowly in
the z-direction, i.e. along the axis of the trap. Particles with
sizes which did not satisfy (21) would be trapped, whereas
those with sizes which satisfy (21) would pass through the
standing-wave trap unhindered. The desired particle size
to be ‘filtered’ could be changed by varying the radiation
wavelength. A variation on this idea would be a stationary
collection of particles and a moving standing wave trap, created
by slightly detuning the light propagating in the +z-direction
from that in the −z-direction. The moving standing-wave trap
would drag or ‘skim off’ particles with sizes which did not
satisfy (21), leaving behind only those for which equation (21)
is satisfied.

8. Discussion

We have presented an outline of the theory of CRS and an
example simulation of a collection of free latex microparticles
pumped by a strong laser field. The results of a simple
CRS model predict the spontaneous formation of an intense
backscattered (probe) field and a strong particle density
grating.

Results of preliminary experiments involving trapping of
TiO2 particles in a standing-wave trap were also presented.
These preliminary experiments have not been performed

in a direct attempt to observe CRS (in the experiments
there are two counterpropagating pump fields such that the
ponderomotive forces do not have to spontaneously develop
from the pump/probe interaction). However, they provide
useful information about the number of particles which we can
expect to participate in proof-of-principle experimental studies
of CRS. In addition to the role of these experiments with regard
to CRS, it was shown that they also represent a novel method
of optical particle characterization.

The CRS simulation presented here showed the evolution
to occur on a µs–ms timescale. Great effort has been applied
in the standing-wave trap experiments to maximize the time
frame over which a collection of particles remain in the
scattering volume. In the case when the thermophoretic
force dominated the particle motion, the particle velocity was
∼3 mm s−1 which translates to a time of 20 ms to traverse a
distance (roughly equal to the pump beam waist) of 60 µm.
Simulations with an infra-red pump have indicated that this is
not a sufficient time frame by an order of magnitude for CRS
to build up. Therefore it is required that the steps outlined to
minimize convection (lower medium gas pressure, more tightly
focused pump beam) are taken.

CRS by nanoparticles at visible wavelengths would occur
on a faster µs timescale. At first, this relaxes the requirements
of the pump intensity and medium pressure. However,
the Brownian motion of these very small particles may be
problematic in this regime. In a given time interval t , the
mean Brownian displacement xrms of a particle is given by

xrms =
[
kBT Cc

3πηa
t

]1/2

. (22)

For example, for a latex particle (a = 50 nm) in air at standard
temperature and pressure, xrms ∼ 0.1 µm in 10 µs. This is
equivalent to λ/4 at the optical wavelength which is half the
distance between standing-wave anti-nodes, i.e. the distance
such that the scattered radiation from this particle is exactly π

out of phase with that of bunched particles. With this Brownian
motion acting to wash out any collective behaviour, it seems
sensible to take the so described measures to minimise other
undesired processes, namely medium convection.
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