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Abstract. The coupled propagation of two electromagnetic waves in plasma
is studied in order to find the conditions for induced transparency. This means
unattenuated propagation of the waves through plasma which is overdense, and
thus opaque, for one (or both) of them. This is made possible by a modulation
of the refractive properties of the plasma, due to a relativistic increase in the
electron mass, or to a variation in electron density caused by longitudinal
plasma oscillations driven by the ponderomotive potential associated with the
beat of the waves. Starting from a relativistic fluid description, we make an
Ansatz containing two transverse monochromatic electromagnetic plane waves,
and longitudinal plasma oscillations at the sum and difference of their frequen-
cies. For weakly relativistic intensities we derive coupled dispersion relations,
which take into account the polarization of the waves and the nonlinearities with
respect to both their amplitudes. This serves to explore the conditions for
induced transparency and the modes of propagation.

1. Introduction
Induced transparency [1, 2], lasing without inversion [3] and related phenom-

ena [4] stimulate the interest of researchers in their search for new nonlinear media
suitable for amplifying or switching. This has particular appeal in the quest for
coherent X-ray lasers, where mirrors are difficult to obtain.

Electromagnetically induced transparency (EIT) means the propagation of an
electromagnetic wave through an otherwise opaque medium, made possible by the
interaction with a second wave. In plasma, the coupling mechanism is a modula-
tion of the plasma frequency, which determines the refractive properties of the
plasma. This is due both to a relativistic increase in the electron mass and to a
variation in electron density caused by longitudinal plasma oscillations driven by
the ponderomotive potential associated with the beat of the waves.

A study of EIT by Harris [1] employed a three-wave model, incorporating two
transverse electromagnetic waves, with frequencies !1 > !p, !2 < !p, where
!p ¼ ð4pn0e2=mÞ1=2 is the (unperturbed) plasma frequency (n0 is the unperturbed
electron density, ÿe the electron charge and m their rest mass), and a longitudinal
plasma wave at the difference frequency !ÿ ¼ !1 ÿ !2. It predicts transparency if
the latter is slightly lower than !p.

Matsko and Rostovtsev [5] found that the conditions for EIT are affected by
the excitation of the anti-Stokes wave at !1 þ !p as well.
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While these workers assumed that the amplitude of the wave at the lower

frequency is small, an investigation of modulational instability of two coupled

waves (which involves the same interaction mechanism) by McKinstrie and

Bingham [6] allowed for finite amplitudes of both waves and also took the relativistic

electron mass into account. They used an expansion of the wave vectors in terms of

the amplitudes, which, however, breaks down at the transition to transparency.

The aim of the present paper is to explore the conditions of EIT for two waves

of weakly relativistic amplitudes, which may be comparable. Moreover, we do not

restrict the frequencies, so that either or both may be above or below the plasma

frequency.

2. Coupled propagation in plasma
2.1. Relativistic fluid equations

We start from a description of the plasma as cold electron fluid. We take the

relativistic corrections to the electron mass into account since they are of the same

order of magnitude as the ponderomotive coupling [6]. In one spatial dimension

(z) the relevant equatons are (see for example [7])
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where aðz; tÞ is the transverse vector potential scaled by mc2=e (c is the vacuum
speed of light), Eðz; tÞ is the longitudinal electric field scaled by !pmc2=e, pðz; tÞ is
the longitudinal momentum scaled by mc, nðz; tÞ is the electron density scaled by

the unperturbed density n0 and þðz; tÞ ¼ ð1þ a2 þ p2Þ1=2 is the Lorentz factor.

Time is scaled by 1=!p and length by c=!p.

2.2. Expansion in Powers of the Vector Potential

In this section, we determine the coupling of two transverse waves, driven by

applied fields of frequencies !1 and !2, through longitudinal oscillations to the

lowest (second) order in an expansion in powers of the vector potential. For the

latter, we try an Ansatz of the form

a ¼ < a1 exp ði�1Þ þ a2 exp ði�2Þ½ �; ð3Þ

with complex amplitude vectors a1;2 and phases �1;2 ¼ k1;2zÿ !1;2t. (Correspond-
ing to the scalings of time and length, the frequencies !1;2 are scaled by !p and the
wavenumbers k1;2 by !p=c.)

From equations (2) we find that the ponderomotive force ÿ@þ=@z drives

longitudinal plasma waves, characterized by E, p and nÿ 1. To the lowest order

these quantities are proportional to the (scaled) intensity of the transverse waves

I ¼ a2 ¼ I
ð1Þ
0 þ I

ð2Þ
0 þ <ðIþ þ Iÿ þ I11 þ I22Þ; ð4Þ
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where the individual terms are given by

I
ð1;2Þ
0 ¼ ja1;2j2

2
;

Iþ ¼ a1 � a2 exp ði�þÞ;

I11;22 ¼
a 2
1;2 exp ð2i�1;2Þ

2
;

Iÿ ¼ a1 � a �2 exp ði�ÿÞ;

9>=>; ð5Þ

with sum and difference phases �� ¼ �1 � �2.
The Lorentz factor, to this order, is þ � ð1þ IÞ1=2 � 1þ I=2, so that the

density modulations are determined by
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Accordingly, they may be decomposed as

nÿ 1 ¼ <ðnþ þ nÿ þ n11 þ n22Þ; ð7Þ
with

n� ¼ k2�I�
D�

; n11;22 ¼
4k21;2I11;22

D11;22
; ð8Þ

and k� ¼ k1 � k2, D� ¼ !2� ÿ 1, D11;22 ¼ 4!21;2 ÿ 1, !� ¼ !1 � !2.

2.3. Dispersion relation
We substitute n and þ into equation (1) for the vector potential and retain only

terms oscillating with the frequencies !1, !2 of the applied fields. (This assumes
that the frequencies 3!1, 3!2, j2!1 þ !2j and j!1 þ 2!2j of the discarded terms
differ from !1 and !2.) We thus arrive at coupled dispersion relations for the
wavenumbers k1 and k2:
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where 1 denotes a unit tensor and D1;2 ¼ !21;2 ÿ 1.
The first term in each equation corresponds to a reduction of the plasma

frequency by a factor 1ÿ ðIð1Þ0 þ I
ð2Þ
0 Þ=2 due to the time-averaged relativistic

increase in the electron mass. It is independent of the polarizations of the waves,
in contrast to the subsequent terms with the dyads of amplitude vectors.

2.4. Polarizations
We split the amplitude vectors into scalar amplitudes and unit vectors,

a1;2 ¼ a1;2e1;2 and find that the Ansatz (3) works for four different combinations
of polarizations:
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LP: linear polarizations, parallel: e1 ¼ e2 ¼ ex;
LO: linear polarizations, orthogonal: e1 ¼ ex; e2 ¼ ey;
CS: circular polarizations, same senses of rotation: e1 ¼ e2 ¼ eþ ¼ ðex þ ieyÞ=21=2;
CO: circular polarizations, opposite senses of rotation: e1 ¼ eþ; e2 ¼ eÿ ¼ e �þ.

In each case, the dispersion relation takes the form of two coupled bilinear
equations in the wavenumbers k1 and k2:

A11k
2
1 þ 2A12k1k2 þA22k

2
2 ¼ A; B11k

2
1 þ 2B12k1k2 þ B22k

2
2 ¼ B; ð11Þ

with coefficients, depending on the polarizations:
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CS and CO:
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In the last set of coefficients, the upper sign is for CS, and the lower sign for CO.
Mathematically, equations (11) represent conic sections in the k1–k2 plane,

centred at the origin, and can be solved analytically. It should be noted that for
circular polarizations the longitudinal waves providing the coupling are excited
only at the difference frequency !ÿ for CS (as assumed in [1], although for linear
polarizations) and at the sum frequency !þ for CO. For LO the equations are
decoupled.
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3. Results
3.1. Conditions for transparency

The plasma is transparent for both waves if, for real !1 and !2, the wave-

numbers k1 and k2 are both real. We have checked this condition for the solution of

the dispersion relations (11) for different amplitudes a1 and a2 and plotted the

areas where it is satisfied for at least one of the two sets of solutions in the

frequency ranges !1 ¼ 0N2:5 and !2 ¼ 0N1:1. Figure 1 shows the results for

parallel linear polarizations and figure 2 the results for circular polarizations.

In figure 1 (a), a2 is set to zero; this corresponds to the treatment by Harris [1],

and Matsko and Rostovtsev [5], except that we take the second harmonic 2!1 into
account. We notice a region of transparency and, for !1;25 1, a complementary

region of induced opacity, each bounded by the resonance of the difference
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Figure 1. Regions of transparency (shaded) in the !1–!2 plane, for parallel linear
polarizations: (a) a1 ¼ 0:2, a2 ¼ 0; (b) a1 ¼ a2 ¼ 0:1; (c) a1 ¼ a2 ¼ 0:2; (d)
a1 ¼ a2 ¼ 0:3.



frequency with the plasma frequency, !ÿ ¼ 1, as found by these workers. Addition-
ally, we find transparency in a narrow region bounded by the second harmonic
resonance, 2!14 1. Plots for equal amplitudes a1 ¼ a2 ¼ 0:1N0:3 (figures 1 (b)–(d))
show additional regions of transparency near the resonances of the sum frequency
!þ ¼ 1, and also of the second harmonics, 2!1 ¼ 1 and 2!2 ¼ 1. All these regions
grow in width as the amplitudes increase.

In figure 2 we see that for the cases of co-rotating and counter-rotating circular
polarizations, transparency is induced only near the resonances of the difference
and sum frequencies respectively.

3.2. Dispersion curves
Figure 3 shows examples of dispersion curves for the wavenumbers k1 and k2

versus !2 for fixed !1 in the case of parallel linear polarizations. Figures 3 (a)–(c)
are cuts through the transparency regions near !ÿ ¼ 1 and 2!2 ¼ 1 for !1 ¼ 1:45
for different amplitude ratios. Also indicated in these plots is the wavenumber
corresponding to the higher frequency: k

ð0Þ
1 ¼ ð!21 ÿ 1Þ1=2. Figure 3 (d) is a cut

through the regions near !þ ¼ 1 and 2!2 ¼ 1 for !1 ¼ 0:45 and equal amplitudes
a1 ¼ a2 ¼ 0:3. We note the existence of two modes with different wavenumbers for
certain frequency ranges and the possibility of transparency for counter-propagat-
ing waves, indicated by opposite signs of k1 and k2.

4. Conclusions
We have studied the coupled propagation of two transverse electromagnetic

plane waves through a weakly relativistic cold plasma, taking into account long-
itudinal plasma waves up to second order in the amplitudes of the transverse fields.
These waves are excited at the sum and difference of the frequencies of the applied
fields and, at their second harmonics, lead to transparency if either of these
frequencies lies in a narrow band below the plasma frequency. These bands
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Figure 2. Regions of transparency (shaded) in the !1–!2 plane, for circular polarizations,
a1 ¼ a2 ¼ 0:2: (a) co-rotating; (b) counter-rotating.



broaden as the amplitudes increase. For the difference frequency this has been
described earlier by Harris [1] and Matsko and Rostovtsev [5]. By contrast,
transparency induced through plasma oscillations at the sum frequency is of
particular interest, since in this case neither transverse wave can propagate in the
plasma on its own.

An important issue that remains to be addressed is the evolution of the field
amplitudes when they are switched on; how do the waves penetrate from the
surface into the plasma? Will the interaction of the evanescent waves near the
surface gradually establish the longitudinal oscillations necessary for transparency?
From this point of view, the theoretical possibility of transparency mutually
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Figure 3. Dispersion curves of k1ð!2Þ (——), k2ð!2Þ (– – –) for fixed !1, parallel linear
polarizations: (a) !1 ¼ 1:45, a1 ¼ 0:1 and a2 ¼ 0:2; (b) !1 ¼ 1:45 and a1 ¼ a2 ¼ 0:2;
(c) !1 ¼ 0:45, a1 ¼ 0:2 and a2 ¼ 0:1; (d) !1 ¼ 0:45 and a1 ¼ a2 ¼ 0:3. In (a)–(c), k

ð0Þ
1

(N � N) is also shown.



induced by counter-propagating waves below the plasma frequency is very
unlikely to be realized.

Since there is no restriction on the frequencies in the present formalism, it can
equally be used to study other phenomena of nonlinear collective interaction in
plasma, such as Raman scattering or modulational instability.

We hope to be able to complement the theory with experiments at the
Strathclyde Electron and Terahertz to Optical Pulse Source (TOPS) [8] in the
near future. In one set-up, we plan to use the 4TW beam at TOPS (wavelength
�1 ¼ 800 nm) to reach scaled amplitudes a1 of up to unity to induce transparency
for a tuneable second beam with amplitude a24 0:1, using the resonance of the
difference frequency. This requires a plasma density of the order of
n0 � 1021 cmÿ3. A different set-up would use pulses in the terahertz range, for
example from a free-electron laser and plasma of a much lower density
n0 � 1015 cmÿ3.
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